
Philippe Dunski
dunski.philippe@gmail.com

Disambiguating overflow/underflow constexpr evaluation

Abstract

In this paper, I'll propose you to fix some inconsistant compiler's behaviour when dealing with
constexpr evaluation, and specially, its behaviour face to (unsigned) integer overflow/underflow.

Overflow/ underflow for every integer type different than unsigned int is currently an undefined
behaviour, when UINT_MAX + 1 and UINT_MIN – 1 are equal to 0

This proposal aims to fix some cases of this undefined behaviour, making compiler more consistant
when dealing with integral constexpr evaluation, making such evaluation clearly and explicitly

conceptual.

Motivation

C++ is known for its point of view that « developer knows what he is doing ».

It means that compiler should not go against the developer's decision, especially when developper
makes use of constexpr.

From my point of view, it also means that, any intger constexpr assignment's result should be
constrainted by its underlying type range, regardless of whether this type is signed or unsigned, and
regardless of the expression's type at the right side of the assignment operator.

The problem

There is, actually, three main line defineing the compiler's behaviour when dealing with integer
constexpr value definition :

• conversion to another type (which is irrelevant here)

• promotion which can araise for any type smaller than (unsigned) long long and

• overflow rules, which specifically says that UINT_MAX + 1 == 0 == UINT_MIN -1 (but is an
undefined behaviours for signed integers)

At runtime, such main lines should not be a problem, but when dealing with constexpr, it is.

There are – at least – two good reasons to consider the runtime behaviour to be bad for constexpr.

1- Compilers behaviour inconsistancy

Please take a look at following code.

#include <type_traits>
#include <limits>
#include <cstdint>
using namespace std;

using I8Min = integral_constant<int8_t, numeric_limits<int8_t>::min()-1>;
using I16Min = integral_constant<int16_t, numeric_limits<int16_t>::min()-1>;
using I32Min = integral_constant<int32_t, numeric_limits<int32_t>::min()-1>;
using I64Min = integral_constant<int64_t, numeric_limits<int64_t>::min()-1>;

using I8Max = integral_constant<int8_t, numeric_limits<int8_t>::max()+1>;
using I16Max = integral_constant<int16_t, numeric_limits<int16_t>::max()+1>;
using I32Max = integral_constant<int32_t, numeric_limits<int32_t>::max()+1>;

mailto:dunski.philippe@gmail.com

using I64Max = integral_constant<int64_t, numeric_limits<int64_t>::max()+1>;

using UI8Min = integral_constant<uint8_t, numeric_limits<uint8_t>::min()-1>;
using UI16Min = integral_constant<uint16_t, numeric_limits<uint16_t>::min()-1>;
using UI32Min = integral_constant<uint32_t, numeric_limits<uint32_t>::min()-1>;
using UI64Min = integral_constant<uint64_t, numeric_limits<uint64_t>::min()-1>;

using UI8Max = integral_constant<uint8_t, numeric_limits<uint8_t>::max()+1>;
using UI16Max = integral_constant<uint16_t, numeric_limits<uint16_t>::max()+1>;
using UI32Max = integral_constant<uint32_t, numeric_limits<uint32_t>::max()+1>;
using UI64Max = integral_constant<uint64_t, numeric_limits<uint64_t>::max()+1>;

We have – basically – 16 overflow / underflow behaviours. We could expect to get exactely the
same behaviour for every case. But, we don't :

• Some compilers will only consider signed values as compile time errors, but not unsigned
values

• Some compilers will consider all unsigned values and only MIN-1 unsigned value as error

• Some compiler will only add uint8_t and uint16_t at their error list with some specific
options

• Some compilers are just fine with such code and will only produce a warning if some
specific option is set

• some compiler have different behaviour following the way the value is expressed ; agreeing
with the use of std::numeric_limits<some_type>::max()+1, but producting a compile time error
when using directly the corresponding value

And, behind the presence of a compile time, I saw the same compiler in version giving two different
reasons for those errors.

The main reason for this situation is that at least 8 of those cases are undefined behaviour.

An « unexpected loop » in constexpr values

Even worst than compiler inconsistancy is the possible presence of an unexpected – and bug prone
– loop in constexpr evaluation.

Please take a look at the following code :

template <typename IndexType, typename T, typename... Ts>
struct IndexImpl;

template <typename IndexType, typename T, typename... Ts>
struct index_impl<IndexType, T, T, Ts...> : integral_constant<IndexType, 0> {};

template <typename IndexType, typename T, typename U, typename... Ts>
struct index_impl<IndexType, T, U, Ts...> :
 integral_constant<IndexType, 1 + index_impl<IDX,T, Ts...>::value> {};

template <typename IndexType, typename ... TS>
using type_index = index_impl<IndexType, T, TS ...>::value;

It is, basically, a more or less naive way to get the index of some type in a variadic templated list
which could be defined in the form of

template <typename ... Args>

struct type_list{};

Everything seems to be perfectly fine, isn't it ? But, please, consider to use such TypeIndex in a
way like

using my_list = my_list</* 256 or more user defined types*/>;

constexpr uint8_t my_index = type_index<uint8_t, some_type, type_index>;

The 256th type's index could be computed to 0, since CHAR_MAX+1 is an undefined behaviour. But
their is already an index equal to 0 (it should be the index of the first type in the list).

We get an « unexpected loop » when definiing our indexes value, making every index to possibly
represent more than one item.

Such situation is – clearly – inacceptable.

Contra argumentation

One could argue that

It's perfectly normal, since your uint8_t is promoted into uin16_t when computing max +
1, and since this result doesn't overflow from promoted type point of view.

I'm in peace with such argument ... when speaking about runtime.

But, here, I'm specifically speaking about constexpr. In other words, I'm speaking about compiler's
constant, evaulated at compile time. Promotion is just ... irrelevant here.

Currently, it's just like if we let the compiler to tell the developper something like

I know that you asked some (u)intX_t value, but i'll give you an (u)int2X_t one because
of the onder/underflow

My conviction is that it should not append : As far as the developer specifically asked for some
well sized type, compiler should give him the requested type in respect for its allowed range.

If, for any reason, computed value does'nt fit in that range, compiler should have only one possible
answer : to fail at compile time.

And developer should be advised that he has choosen an integer type which is to small to represent
the current result.

Incompatibilities issues

Another could argue that

Changing this could cause an incompatiblity with C.

As far as we are speaking about compile time constants, whose are defined only at the compiler's
level, I don't think there could be any compatibility issue : When a C compiler is always able to use
defined value just as all other compile time constant.

breaking code issues

In worst case, we new rule can break some existing code working on some specific compiler due to
the undefined behaviour.

Fixing such undefined behaviour can, of course, break such code, making it to fail at compile time,
because new defined behaviour is more strict.

I expect that such strictness would mainly fix some hidden or undiscovered bugs (cf : « unexpected
loops »)

Proposed wording

To fix this issue, some change or addition should be required in at least five places

• 6.7.4 [conv rank]

• 7,6 [conv.prom]

• 8.6 [expr.const]

• 10.1.5 [dcl.constexpr]

• 19.1.10 [cpp.cond] :

Addition in 6.7.4 [conv.rank]

1.11) – conversion rank applies on constexpr evaluation only if in the context of the
constexpr, we can determine that the result type of the whole constexpr expression is
greater than every constexpr type in the expression

Addition in 7.6 [conv.prom]

An 8th subclause should be added to conv.prom. It could be simply worded in the form of

Promotion can apply in constexpr evaluation only if result type isat least large enough to
represent the promoted value

ex :

constexpr auto i = std::numeric_limit<uint8_t>::min()-1; // error due to underflow

constexpr auto some_function(){

 return std ::std::numeric_limits<uint16_t>::max()+1; // error due to overflow

}

constexpr std ::int16_t = CHAR_MAX + 1 ; // ok : promotion from char to int16_t allowed

(nota : as far as such rule should have precedence on any other consideration, we could maybe put it
as very first subclause)

We could also make a little change in 7.8.1 (conv.integral)

A prvalue of an integer type can be converted to a prvalue of another integer type. A
prvalue of an unscoped enumeration type can be converted to a prvalue of an integer
type if and only if integer type isn't constexpr.

Addition in 8.6 [expr.const] :

An 8th subclause should be added to 8.6[expr.const] in the form of :

Integer constexpr evaluation should be constrainted by the contextual result type's range,
without any opportunity to overflow nore underflow, no mater if underlying type is
signed or unsigned .

(note : as far as this rules should have precedence on any other consideration, its place could be
reconsidered)

example in 8.6.2.23 :

constexpr int y = h(1); // OK: initializes y with the value 2

 // h(1) is a core constant expression because

 // the lifetime of k begins inside h(1)

constexpr int16_t = h(65535); // error: core constant (65536) doesn't

 // fit in int16_t's range

Modification to 10.1.5 [dcl.constexpr]

 1) - The constexpr specifier shall be applirf only to the definition of a variable or variable
template or the declaration of a function or function template. Its result type is purely
contextual. A function or static data member declared with the constexpr specifier is
implicitely an inline function or variable (10.1.6). If any declaration oof a function or
function template has a constexpr specifier, then all its dclarations shall contain the
constexpr specifier. [Note : <left unchaged>]

Modification to 19.1.10 [cpp.cond]

Finally, I'll suggest to make some modification in 19.1.10 [cpp.cond] to make thinks very clear :

The resulting tokens comprise the controlling constant expression which is evaluated
according to the rules of 8.6 using arithmetic that has at least the ranges specified in
21.3. For the purposes of this token conversion and evaluation all signed and unsigned
integer types act as if they have the same representation as, respectively, intmax_t or
uintmax_t (21.4). [Note: Thus on an implementation where
std::numeric_limits<int>::max() is 0x7FFF and std::numeric_limits<unsigned
int>::max() is 0xFFFF, the integer literal 0x8000 is signed and positive within a #if
expression even though it is unsigned in translation phase 7 (5.2). But, if such overflow
occurs in an integer constepr evaluation, compilation will fail —end note] This
includes interpreting character literals, which may involve converting escape sequences
into execution character set members. Whether the numeric value for these character
literals matches the value obtained when an identical character literal occurs in an
expression (other than within a #if or #elif directive) is implementation-defined. [Note:
Thus, the constant expression in the following #if directive and if statement is not
guaranteed to evaluate to the same value in these two contexts: #if ’z’ - ’a’ == 25 if (’z’ -
’a’ == 25) —end note] Also, whether a single-character character literal may have a
negative value is implementationdefined. Each subexpression with type bool is
subjected to integral promotion before processing continues.

NOTE : more adjustements could be needed throug the standard, especally regarding the
narrowing clauses and rules.

Aknowledgments

	Disambiguating overflow/underflow constexpr evaluation
	Abstract
	Motivation
	The problem
	1- Compilers behaviour inconsistancy
	An « unexpected loop » in constexpr values

	Contra argumentation
	Incompatibilities issues
	breaking code issues

	Proposed wording
	Addition in 6.7.4 [conv.rank]
	Addition in 7.6 [conv.prom]
	Addition in 8.6 [expr.const] :
	Modification to 10.1.5 [dcl.constexpr]
	Modification to 19.1.10 [cpp.cond]
	Aknowledgments

