
MS Office - How to create a ribbon in Excel
This documentation will explain how to add / edit a custom ribbon in an Excel file

Get the editor

To be able to "easily" (in a not WYSIWYG interface) create a ribbon in MS Office, I'm using a
very old tool called CustomOfficeUIEditor. Until now, I've not found any other free tool for
doing this.

The tool can be downloaded from
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuie
ditor.aspx.

For this purpose, I've taken a copy of the software, which can be downloaded here

CustomOfficeUIEditor is an external tool (outside MS Office) who can open an Office file and
add the needed files to create a ribbon. It's possible to do this without an editor, for instance
by using a software like 7-Zip since a .xlsx / .xlsm file is an archive with files and folders.

Add a ribbon in MS Office

The CustomOfficeUIEditor tool isn't a user-friendly tool: you'll need to type yourself the
XML of the ribbon. That XML is also called "the manifest file".

By default, a standard MS Office document doesn't contain any ribbon so, when you'll open
such files with the CustomOfficeUIEditor tool, you'll get an empty document.

Here is a very small XML for creating a ribbon with a button and an edit box:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon>
 <tabs>
 <tab id="customTab" insertAfterMso="TabView" label="Tab">
 <group id="customGroup" label="Group">
 <button
 id="customButton"
 label="Button"
 imageMso="HappyFace"
 size="large"

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor.aspx
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor.aspx
http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/OfficeCustomUIEditorSetup.zip

 onAction="OnButtonClicked" />
 <editBox
 id="customEditBox"
 label="Edit Box"
 onChange="OnEditBoxTextChanged" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Add a ribbon

Once you've installed CustomOfficeUIEditor, just start the interface by double-clicking on
the executable. You'll get a screen like this:

A very simplified interface where you'll click on the File option to open your document.

Open any existing Excel workbook (or just create an empty one for the exercice).

When using the editor, the file itself can't be opened in Excel! Imagine the following situation: the workbook is
opened both in the editor and in Excel. You make a lot of changes in Excel, switch to the editor and change the
manifest. By saving the file in the editor, you'll lose every change made in Excel so... be careful.

The first time, you'll need to add a new ribbon: click on the Insert menu and select Office
2010 Custom UI Part.

You'll then obtain a screen like this:

When customUI14.xml is selected (like illustrated above), click in the right pane and start to
code your XML content.

Before saving your file, be sure to click on the Validate button so a check is made to verify
the quality of the content.

In the example here below, you can see that an error is displayed telling that an attribute ID
(in uppercase) has been found and that this name isn't declared. Indeed, the correct spelling

is id (in lowercase). XML is a case-sensitive language and is terribly strict, no syntax errors
will be tolerated

When the ribbon is correct, save the file and open it in Excel. If everything goes fine, you'll
obtain this:

Download the sample

Manifest analysis

Time to understand what has happens...

http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/Custom.xlsx

The root customUI node and the namespace
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">

The manifest is a XML content and should be valid. You'll need to define your content into a
<customUI> node (mandatory) and you'll need to specify the xmlns (for namespace)
attribute (mandatory).

The [namespace]{#namespace} file will define what attributes exists, are mandatory or not,
for each node type. The referred URL is the Document Type Definition (aka DTD).

For instance, when the user will click on the button of your ribbon, you'll wish to be able to
capture the click and start a subroutine that you've code in VBA. The "on click event" should
be defined in the onAction attribute as defined in the DTD. Microsoft maintain the
documentation here: https://msdn.microsoft.com/en-us/library/dd909370(v=office.12).aspx.
The latest version (June 2018) can be found here

So, if you know that the attribute is onAction you can then add your own subroutine by
typing something like onAction="OnButtonClicked".

The job of the DTD is to make sure that the syntax of your manifest is correct; therefore, the
attribute xmlns="http://schemas.microsoft.com/office/2009/07/customui" is well
mandatory.

Define the ribbon

The ribbon should define inside the <ribbon> node but not immediately since a ribbon is, in
fact, always defined in a tab.

Below we can see the standard ribbon of Excel and you can see a lot of tabs: File, Insert,
Page layout, Formulas, Data, Review, View, ...

Each tab comes with features (buttons, checkboxes, ...). For the Insert tab, we've first a
group of three buttons into a group called Tables:

https://msdn.microsoft.com/en-us/library/dd909370(v=office.12).aspx
http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/namespace.pdf

So, a ribbon should be:

1. Defined in a tab (his own tab or an existing one)

2. Add features in one or more groups (own groups or existing ones)

Below, our manifest now, with the definition of the ribbon. Lines starting with a + are the
ones we've added. The + sign is here only to put in evidence the lines; the sign is not valid so
don't copy/paste in your ribbon.

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
+ <ribbon>
+ <tabs>
+ <tab id="customTab" insertAfterMso="TabView" label="Tab">
+ <group id="customGroup" label="Group">
+ YOUR FEATURES HERE
+ </group>
+ </tabs>
+ </ribbon>
</customUI>

Define the tab

You'll need to give an identifier to the tab (in the attribute called id): your own code for a
new tab or the id of an existing tab.

The standard name are:

• TabHome

• TabInsert

• TabPageLayoutExcel

• TabFormulas

• TabData

• TabReview

• TabView

• TabDeveloper

So, if you want to add a button to the Home tab, just use TabHome as value for the id, f.i.,

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon>
 <tabs>
 <tab id="TabHome">
 ADD A BUTTON TO TabHome
 </tabs>
 </ribbon>
</customUI>

The XML below will, in one line,

1. Create a new tab since the id customTab is not an existing id,

2. Put the new tab after the existing View tab (use insertBeforeMso to add the tab
before),

3. And give him Tab as caption.
<tab id="customTab" insertAfterMso="TabView" label="Tab">

Here is our added tab:

Define the ribbon

Inside the <tab> declaration, you need to define at least one <group>. And here too, you'll to
define the identifier: an existing one for, f.i., adding a button in an existing group or a new
one to create a new group.

The XML below will:

1. Create a new group since the id is a new one (customGroup),

2. And give him Group as name.
<group id="customGroup" label="Group">

Our tab with his group:

As you can see here above, just adding a group isn't enough, you'll need to define which
features (buttons, checkboxes, ...) should be added in the group.

Add features

The XML here below will add to things: a button and an edit box.

Lines starting with a + are the ones we've added. The + sign is here only to put in evidence the
lines; the sign is not valid so don't copy/paste in your ribbon.

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon>
 <tabs>
 <tab id="customTab" insertAfterMso="TabView" label="Tab">
 <group id="customGroup" label="Group">
+ <button
+ id="customButton"
+ label="Button"
+ imageMso="HappyFace"
+ size="large"
+ onAction="OnButtonClicked" />
+ <editBox
+ id="customEditBox"
+ label="Edit Box"
+ onChange="OnEditBoxTextChanged" />
 </group>
 </tabs>
 </ribbon>
</customUI>

The XML below will create a button

1. With an id initialized to customButton,

2. His label (the text that is displayed under the button) set to Button,

3. Use the HappyFace standard image (imageMso is, indeed, the way to reuse a standard
image while image allows you to define yours owns),

4. The size of the button will be large (a big button),

5. The action assigned will be the VBA function called OnButtonClicked.
<button
 id="customButton"
 label="Button"
 imageMso="HappyFace"
 size="large"
 onAction="OnButtonClicked" />

This will result into this:

OnButtonClicked is the VBA callback: to make it work, add a module in your Excel file,
create a subroutine like this:

Public Sub OnButtonClicked
 Msgbox "You've clicked on the button", vbInformation
End Sub

And we can add other features, like an edit box:

<editBox
 id="customEditBox"
 label="Edit Box"
 onChange="OnEditBoxTextChanged" />

As you can see here above, the list of properties depends on the type: for a button, we've a
onAction attribute while it's an onChange for an editBox.

Edit a ribon

The best way to edit a ribbon is, for sure, to use CustomOfficeUIEditor but, for instance, if
you don't have the tool installed on your computer but well 7-Zip, you can edit the ribbon
with 7-Zip!

The MS Office file format is, in fact, an archive. Just rename the file's extension from .xlsx
to .zip if you want to verify this assertion.

So, you can start the 7-Zip interface and open a .xlsx file where a ribbon has been created.

You'll see a folder called customUI and, there, a file called customUI14.xml (remember, that
was the name of our inserted ribbon). By editing that .xml file within 7-Zip (a text editor
will be opened), you can see the content and update it. By saving the file from within the
editor, 7-Zip will compress it and add the file to the original MS Office file.

List of objects

As exhaustively defined in the ribbon's namespace, here is the list of valid objects:

• box

• button

• buttonGroup

• checkBox

• control

• comboBox

• dropDown

• dynamicMenu

• editBox

• gallery

• labelControl

• menu

• splitButton

• toggleButton

Be careful: XML is case sensitive, editBox is the only valid syntax, editbox or EditBox
aren't.

Each object comes with this own attributes, somes are mandatory while the others are
optional.

Find images

By adding a button f.i., you'll assign an image to it.

You can use a personal image like a logo (in that case, you'll need to import the image in the
CustomOfficeUIEditor application and use the image attribute).

You'll most probably use an existing, standard, image. This can be done by using the
imageMso attribute and telling Office which image to use; f.i. AddFolderToFavorites:

The manifest is this one:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
 <ribbon>
 <tabs>
 <tab idMso="TabHome" visible="false" />
 <tab id="customTab" insertAfterMso="TabView" label="Tab">
 <group id="customGroup" label="Group">
 <button
 id="customButton"
 label="Button"
 imageMso="AddFolderToFavorites"
 size="large"
 onAction="OnButtonClicked" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

But ... how to retrieve the list of images?

Microsoft maintains Excel files with the list of existing IDs that can be used as icons in our
ribbon. The "Office 2010 Help Files: Office Fluent User Interface Control Identifiers" can be
downloaded here. You'll get a lot of Excel files, on file by application (Access, Excel, Outlook,
...).

This will give the list of existing IDs in plain text but you'll not see the associated images.

You can download all images (as PNG) for MS Office 2010 or 2013 here (see links in Chapter
2 Download).

An offline version for Office 2010 is here and here for Office 2013.

To make things easier, I've created a [workbook]{#ribbon_images} that contains all images.
Thanks this workbook, we can easier see images and their name; also search on part of it.
The workbook can be downloaded here

The file contains a worksheet with two columns: the id of the image and his visual.

https://www.microsoft.com/en-us/download/confirmation.aspx?id=6627
http://hintdesk.com/2011/07/22/c-print-all-ms-office-imagemso-to-files
http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/Office_2010_Icon_Gallery_Files.zip
http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/Office_2013_Icon_Gallery_Files.zip
http://localhost:8080/notes/docs/Development/Excel/Ribbon/.files/Office_2013_Icon_Gallery_Files.xlsx

Assign callbacks

This term means: which code (VBA in this case) should be fired when an event is raised.

When the user clicks on a button of the ribbon which subroutine should be called?

The XML code below assign the OnButtonClicked subroutine to the onAction event of the
button.

<button
 id="customButton"
 label="Button"
 imageMso="AddFolderToFavorites"
 size="large"
 onAction="OnButtonClicked" />

So, if we wish to catch that event, we'll need to add a public subroutine in our Excel file, that
subroutine can be placed in any module, should be public and should have
OnButtonClicked as name.

But... depending on the callbacks (click, change, toggle state, change, ...), the definition of the
subroutine is not the same.

For a button, the VBA should be something like:

Public Sub OnButtonClicked(control As IRibbonControl)
 ' YOUR CODE
End Sub

For an edit box and the onChange event, the callback is different:

<editBox
 id="customEditBox"
 label="Edit Box"
 onChange="OnEditBoxTextChanged" />

Public Sub OnEditBoxTextChanged(control As IRibbonControl, sText As String)
 ' YOUR CODE
End Sub

The declaration of callbacks can be found on the official site :
How can I determine the correct signatures for each callback procedure?.

Pay attention to the Signatures columns; you need to look for VBA.

https://docs.microsoft.com/en-us/previous-versions/office/developer/office-2007/aa722523(v=office.12)#how-can-i-determine-the-correct-signatures-for-each-callback-procedure

