
Inside DistoX2 
Leica Disto X310 based DistoX, Firmware Version 2.1 - 2.3 

 
2014/07/30 

 
 
Introduction 
 
This document describes some internals of the DistoX upgrade board for the Leica X310. 
 
 
The DistoX Wire(less) Protocol 
 
The DistoX uses the Bluetooth Serial Port Profile (SPP) to communicate to a PDA or PC. The 
Bluetooth connection is always set up by the PDA. SPP offers a simple bidirectional byte oriented 
channel. There are two kinds of communications: Disto initiated and PDA initiated. 
 
Disto initiated communication consists of a data packet sent from the Disto to the PDA and an 
acknowledge packet sent from the PDA to the Disto. Data is resent continuously in intervals of 5 
seconds until a valid acknowledge is received. 
 
PDA initiated communication consists of a command packet sent from the PDA to the Disto 
followed by a reply packet sent from the Disto to the PDA in most cases. The PDA side should 
repeat the command if no reply is received. 
 
  
Data Packets 
 
All data packets have a length of 8 bytes. 
 
Measurement Data Packet: 
Byte 0: bit 7: sequence bit, bit 6: bit 16 of distance, bits 0-5: 000001 (packet type) 
Byte 1: low byte of distance 
Byte 2: high byte of distance 
Byte 3: low byte of declination 
Byte 4: high byte of declination 
Byte 5: low byte of inclination 
Byte 6: high byte of inclination 
Byte 7: high byte of roll angle 
 
The sequence bit is complemented for each new packet. A packet with the same contents and the 
same sequence bit as the preceding packet is a wrongly repeated packet. It should be acknowledged 
and discarded. 
 
The 17 bit distance is in mm for distance <= 100m. Above 100m the resolution changes to cm: 
99999 = 99.999m, 100000 = 100m, 100001 = 100.010m, 110000 = 200m. 
The angles are in radiant * 2^15 / Pi (full circle = 2^16). 
For declination: 0x0000 = north, 0x4000 = east, 0x8000 = south, 0xC000 = west. 
For inclination: 0x0000 = horizontal, 0x4000 = up, 0xC000 = down. 
Display orientation: 0x0000 = up, 0x4000 = left, 0x8000 = down, 0xC000 = right. 



 
 
Vector Data Packet: 
Byte 0: bit 7: sequence bit, bits 0-6: 0000100 (packet type) 
Byte 1: low byte of absolute value of the acceleration 
Byte 2: high byte of absolute value of the acceleration  
Byte 3: low byte of absolute value of the magnetic field 
Byte 4: high byte of absolute value of the magnetic field 
Byte 5: low byte of dip angle (inclination of the magnetic field) 
Byte 6: high byte of dip angle (inclination of the magnetic field) 
Byte 7: low byte of roll angle 
 
The Vector packet is sent after the Measurement packet to provide additional information about the 
measurement. It is primarily used for quality checking and post processing of measurement errors. 
There is no specified unit for the absolute values of the field vectors. They can only be used relative 
to each other. 
The 16 bit angles are in radiant * 2^15 / Pi (full circle = 2^16). 
The dip angle is 0 at the equator, positive in the southern hemisphere, and negative in the north. 
The full roll angle can be reconstructed by concatenation of Measurement packet byte 7 and Vector 
packet byte 7. The orientation is as stated above (display left = 0x4000). 
The Vector packet must be acknowledged separately. 
 
 
Calibration Data Packet 1 (Acceleration Sensor): 
Byte 0: bit 7: sequence bit, bits 0-6: 0000010 (packet type) 
Byte 1: low byte of Gx sensor 
Byte 2: high byte of Gx sensor 
Byte 3: low byte of Gy sensor 
Byte 4: high byte of Gy sensor 
Byte 5: low byte of Gz sensor 
Byte 6: high byte of Gz sensor 
Byte 7: calibration measurement number (1, 2, …) 
 
Calibration Data Packet 2 (Magnetic Field Sensor): 
Byte 0: bit 7: sequence bit, bits 0-6: 0000011 (packet type) 
Byte 1: low byte of Mx sensor 
Byte 2: high byte of Mx sensor 
Byte 3: low byte of My sensor 
Byte 4: high byte of My sensor 
Byte 5: low byte of Mz sensor 
Byte 6: high byte of Mz sensor 
Byte 7: calibration measurement number (1, 2, …) 
 
For each calibration measurement an acceleration packet is sent followed by a magnetic field 
packet. The two packets must be acknowledged separately. 
 
 
Acknowledge Packet 
 
An acknowledge packet consists of a single byte: 
Byte 0: bit 7: sequence bit, bits 0-6: 1010101 
 



The sequence bit of the acknowledge byte must match the sequence bit of the corresponding data 
packet. 
 
 
Command Packets 
 
The following commands may be sent from the PDA to the Disto: 
 
Start Calibration (1 byte): 
Byte 0: 00110001 
 
Stop Calibration (1 byte): 
Byte 0: 00110000 
 
Start Silent Mode (1 byte): 
Byte 0: 00110011 
 
Stop Silent Mode (1 byte): 
Byte 0: 00110010 
 
Power Off (1 byte): 
Byte 0: 00110100 
 
Switch Laser On (1 byte):  (version 2.3 & higher) 
Byte 0: 00110110 
 
Switch Laser Off (1 byte):   (version 2.3 & higher) 
Byte 0: 00110111 
 
Trigger Measurement (1 byte):  (version 2.3 & higher) 
Byte 0: 00111000 
 
 
Read Memory (3 bytes): 
Byte 0: 00111000 
Byte 1: low byte of address 
Byte 2: high byte of address 
 
Write Memory (7 bytes): 
Byte 0: 00111001 
Byte 1: low byte of address 
Byte 2: high byte of address 
Byte 3: data byte 0 
Byte 4: data byte 1 
Byte 5: data byte 2 
Byte 6: data byte 3 
 
Read and Write commands read or write 4 bytes of memory starting at the given address. For the 
interpretation of the address values see below. A memory read reply is sent by the Disto for each 
read and write command. The read reply following a write command may be used to check the 
correctness of the written data. There is no reply for the 1 byte commands. 
 



 
Reply Packets 
 
The format of read reply packets is similar to that of the data packets. 
 
Memory Read Reply: 
Byte 0: 00111000 (packet type) 
Byte 1: low byte of address 
Byte 2: high byte of address 
Byte 3: data byte 0 
Byte 4: data byte 1 
Byte 5: data byte 2 
Byte 6: data byte 3 
Byte 7: 0 (not used) 
 
 
Address Space 
 
The 16 bit addresses used for read and write commands allow access to the following values: 
 
0x0000 – 0x4BFF: Data store (read only) 
0x8008 – 0x8009: Serial number (low/high) 
0x8010 – 0x8027: G calibration coefficients 
0x8028 – 0x803F: M calibration coefficients 
0x8040 – 0x8042: non-linearity coefficients 
0xC000 – 0xDFFF: CPU RAM 
0xE000 – 0xE003: Firmware Version (Major/Minor/0/0, read only) 
0xE004 – 0xE007: Hardware Version (Major * 10 + Minor, read only) 
All other ranges: Reserved 
 
The Data Store contains a circular buffer to store all measured data. It consists of 19 Flash memory 
blocks of 1 Kbyte each. Each block is divided into 56 segments of 18 bytes each. The layout of the 
segments is: 
Bytes 0 to 7: first packet 
Bytes 8 to 15: second packet 
Byte 16: Hot flag for first packet 
Byte 17: Hot flag for second packet 
The layout of the packets is identical to the Data packets specified above. The sequence bit is zero. 
The Hot flags are 0xFF for new packets (not yet sent over Bluetooth) and 0 for old (already sent) 
packets. The first and last segments in the queue are separated by a range of erased segments (all 
bytes = 0xFF).  
The device writes a segment consisting of a type 1 and a type 4 packet for each distance 
measurement or a type 2 and a type 3 packet for a calibration measurement. 
 
 
Bootloader Command Packets 
 
In bootloader mode, the device allows to read and write 256 byte blocks in the whole Flash 
memory. The bootloader itself is write protected. 
 
 
 



Read Memory Block (3 bytes): 
Byte 0: 00111010 
Byte 1: bits 8..15 of address  (24 bit address, 256 byte aligned) 
Byte 2: bits 16..23 of address 
 
Write Memory Block (259 bytes): 
Byte 0: 00111011 
Byte 1: bits 8..15 of address  (24 bit address, 256 byte aligned) 
Byte 2: bits 16..23 of address 
Byte 3: data byte 0 
Byte 4: data byte 1 
… 
Byte 258: data byte 255 
 
Power Off (1 byte): 
Byte 0: 00110100 
 
 A corresponding reply packet is sent by the Disto for each read and write command. 
 
 
Bootloader Reply Packets 
 
Memory Read Block Reply (264 bytes): 
Byte 0: 00111010 (packet type) 
Byte 1: bits 8..15 of address  (24 bit address, 256 byte aligned) 
Byte 2: bits 16..23 of address  (currently always 0) 
Byte 3-7: not used 
Byte 8: data byte 0 
Byte 9: data byte 1 
… 
Byte 263: data byte 255 
 
Memory Write Block Reply (8 bytes): 
Byte 0: 00111011 (packet type) 
Byte 1: bits 8..15 of address  (24 bit address, 256 byte aligned) 
Byte 2: bits 16..23 of address  (currently always 0) 
Byte 3: low byte of checksum (16 bit sum of all bytes) 
Byte 4: high byte of checksum 
Byte 5-7: not used 
 
 
Flash Memory Map 
 
0x000000 – 0x0007FF: Bootloader (read only) 
0x000800 – 0x00ABFF: Firmware 
0x00AC00 – 0x00AFFF: Option Store 
0x00B000 – 0x00B3FF: Configuration Store (calibration coefficients) 
0x00B400 – 0x00FFFF: Data Store (1008 segments + 1 erased block) 



Appendix A: Basic Communication Code 
 
 
unsigned byte input[8]; // input buffer 
int oldType, oldX, oldY, oldZ;  // previous packet 
 
Read(input, 0, 8);  // receive 8 bytes 
Byte type = input[0]; 
Int op = type & 0x3F; 
if (op < 0x20) {  // data packet 
    Write(type & 0x80 | 0x55);  // send acknowledge byte 
    int x = input[1] + (input[2] << 8); 
    int y = input[3] + (input[4] << 8); 
    int z = input[5] + (input[6] << 8); 
    if (type != oldType && x != oldX && y != oldY && z != oldZ) { 
        if (op == 1) { // survey data 
            // 17 bit distance 
            distance = x + ((type & 0x40) << 10); 
            // cm resolution above 100m 
            if (distance > 100000) distance = (distance – 90000) * 10; 
            azimuth = y; 
            inclination = z; 
            roll = input[7] << 8; // high bits of roll angle 
        } else if (op == 4) { // vector data 
            absG = x; // absolute value of G vector 
            absM = y; // absolute value of M vector 
            dip  = z; // dip angle 
            roll += input[7]; // low bits of roll angle 
        } else if (op == 2) { // G calibration data 
            Gx = x; // acceleration x sensor 
            Gy = y; // acceleration y sensor 
            Gz = z; // acceleration z sensor 
        } else if (op == 3) { // M calibration data 
            Mx = x; // magnetic x sensor 
            My = y; // magnetic y sensor 
            Mz = z; // magnetic z sensor 
        } 
        // ignore unknown packets 
        oldType = type; oldX = x; oldY = y; oldZ = z; 
    } 
} 


