
Dev vs. Ops:
 The State of Accountability

Table of Contents

03

05

07

14

19

22

Executive Summary & Key Findings

Methodology & Demographics

The Modern Software Delivery Lifecycle:
What are the Practices, Metrics & Tools in
Today’s DevOps Ecosystem?

The Blame Game:
Who is Accountable for Ensuring Overall
Application Reliability?

The Challenge:
How Does DevOps Create Reliabilty Chaos?

Conclusion

02

Dev vs. Ops: The State of Accountability

Executive Summary

There has long been a divide between development and operations teams. But
recently, there has been a movement, within both small startups and massive
enterprise organizations alike, to break down these metaphorical walls and build
bridges of shared accountability between the two functions. With the emergence
of roles like DevOps and Site Reliability Engineering (SRE), we are seeing the
introduction of a more collaborative approach to delivering reliable software.

Still, in the context of increasingly distributed and complex systems and tooling,
when things go awry, accountability often remains unclear. In the heat of battle,
when an application breaks and customers are feeling the burn, who is ultimately
responsible for ensuring application reliability? Do enterprises with DevOps
workflows have the right processes in place to ensure quick resolution of issues?

In our Dev vs. Ops: The State of Accountability report, we surveyed over 2,000
IT professionals around the globe to get a sense of how shared accountability
affects the delivery of reliable software in a DevOps environment, and what are
some of the top challenges teams face when it comes to building and maintaining
quality applications.

Executive Summary & Key Findings

03

Executive Summary & Key Findings

04

Key Findings

DevOps － no longer just a buzzword, but still not a household practice.
The majority of respondents said that DevOps is in their roadmap. However, over
82% of organizations have only partially adopted DevOps practices (or haven’t
adopted any), in contrast to just 17% of respondents that claimed to have fully
adopted DevOps.

Organizations are under pressure to deliver software faster than ever － which is
causing their applications to break.
More than 90% of respondents are deploying code at least once a month, and over
60% are deploying code at least once every two weeks. At the same time, nearly
40% of all respondents indicated that moving too quickly is a primary reason that
errors make it into production.

The road to DevOps is paved with chaos.
With most organizations in the midst of DevOps adoption, many IT professionals
find themselves lacking the structure and resources they need to deliver reliable
applications. Survey participants cited a lack of formal processes as the top
reliability challenge for them, and also said that a lack of resources in pre-
production, including tools and/or people, was a key reason for errors making
it into production.

Too many organizations rely on their customers as an alerting system.
Despite heavy adoption of automation and DevOps tooling, more than half of
respondents said they rely on customers to tell them about errors, and over 10%
said they are notified about issues by their boss.

A lot of people are wasting more than a day per week just troubleshooting errors.
Though more than half of respondents named productivity as the primary way they
measure team effectiveness, more than 25% of respondents, including both
development and operations, still spend roughly one full work day per week (or
more) troubleshooting errors. Another 42% of respondents spend between half to a
full day of their work week troubleshooting.

When everyone feels accountable, no one is really accountable.
67% of respondents blame their entire team when an application breaks or has an
error, and 73% said that both Dev and Ops are equally accountable for the overall
quality of an application. However, when everyone is an owner, it can be difficult to
actually hold someone responsible. Having multiple or unclear owners was cited as
the second biggest obstacle to ensuring application reliability, and respondents also
noted that a lack of clarity around who is actually responsible for the quality of code
is a leading cause of errors making it into production.

This report is based on a survey conducted by OverOps of 2,419 IT professionals
ranging from developers and QA professionals to DevOps engineers and SREs.
We solicited responses through a variety of channels, including our own
database, social media, developer and Ops-focused conferences, and third-party
websites geared towards engineering professionals. Respondents represented a
wide range of company sizes, industries and geographical locations.

05

Methodology &
Demographics

Top Industries

Energy

RetailTelecom

Manufacturing

TechnologyEducation

Finance/Financial Services

Public SectorHealthcare/Pharmaceuticals

Media & Entertainment

Region

North America - 66.5% Europe - 12.9%

Middle East: 2.1%

Asia - 11.7%

Africa - 1.9%

South & Central America - 4.1%

Australia/Oceania - 0.8%

Methodology & Demographics

Dev

IT Management

Ops

Testing/QA

21.5%

8.6%

11.3%

58.6%

Role

Bleeding EdgeModernLegacy

73.5%

13.5% 13.0%

Infrastructure

Over 1,000
employees

41.8%

251- 1,000
employees

16.9%

51-250
employees

19.9%

1-50
employees

21.4%

Company Size

06

What are the Practices,
Metrics & Tools in Today's

DevOps Ecosystem?

The Modern Software Delivery Lifecycle:

Modern development and operations professionals rely on a variety of tools and
processes to build and maintain their applications. Survey findings point to
DevOps adoption as a foundational part of the toolchains and workflows used by
today’s developers and IT professionals.

07

The Modern Software Delivery Lifecycle

The Modern Software Delivery Lifecycle

08

DevOps Transformation is
Underway － But Slow Going
Despite the buzz around DevOps for the past several years,
very few organizations have fully embraced it. Less than 18%
of respondents claimed to be fully DevOps, in contrast to the
82.2% that have only partially, or not yet at all, adopted
DevOps practices and tools. Respondents indicated that the
vast majority of organizations are headed in that direction,
but there is still a long way to go.

of respondents claim
to be fully DevOps

have only partially, or not yet
at all, adopted DevOps

practices and tools

The larger the company, the
greater the chance that they

have at least partially
adopted DevOps workflows.

21.0%

54.9%Partially adopted DevOps

Fully DevOps

Considering adopting DevOps

No plans to adopt DevOps

17.8%

6.3%

Current State of DevOps Adoption

The survey also revealed that the larger the company, the
greater the chance that they have at least partially adopted
DevOps workflows – 78.5% of respondents from companies
with 1,000+ employees versus 48.2% from companies with 50
or less. Conversely, the percentage of respondents that
indicated no plans to adopt or that they’re still considering
adoption decreases as the size of the company grows.

Monthly QuarterlyBi-weekly WeeklyDaily Annually

30.0%

1.2%
4.2%

25.3%
23.5%

14.4%

Average Release Frequency

1.4% responded with other various time periods

We’re Moving Faster Than Ever
(And Still Breaking Things)
Agile adoption is alive and well across all industries and
company sizes. According to the survey, the majority of
respondents – regardless of company size, DevOps adoption,
industry or infrastructure – are running more frequent release
schedules. More than 90% are deploying code at least once a
month, and over 60% are deploying code at least once every
two weeks. 43.8% of all respondents also noted that they
align their code or feature releases with sprints.

While speed is clearly a priority amongst the development
and operations communities, it introduces risks. Pressure to
move quickly to deploy new features and meet sprint
deadlines can significantly impact code quality and reliability.
38.2% of all respondents indicated that moving too quickly is
actually a primary reason that errors make it into production.
Of respondents that reported having full DevOps adoption,
the percentage was slightly higher at 44.6%.

The Modern Software Delivery Lifecycle

09

of respondents that have
fully adopted DevOps say

moving too quickly results in
production errors

of respondents are
deploying code at least

once a month

Automation Isn’t a Silver Bullet
To keep up with accelerated release schedules, organizations
are leveraging a wide spectrum of automation tools to
support the software development lifecycle. Both
development and operations teams rely heavily on
automation to detect issues in production, with 62.7% of all
respondents reporting they use automated tooling for error
notification. Additionally, 63.2% reported that they use
automated testing to ensure application quality.

Despite automation adoption, the survey also revealed that
an alarming number of people still rely on manual methods.
76.6% of all survey participants said they use at least one
manual process to discover errors, and 35.6% said that they
use exclusively manual processes. Even worse, more than
half (52.2%) specifically said they rely on customers to tell
them about errors.

The Modern Software Delivery Lifecycle

10

How do you discover errors in production?

Automated Processes Manual & Automated
Processes

Manual Processes

23.4%

41.0%

35.6%

Despite automation
adoption, 52.2% of

respondents still rely
on customers to find out

about errors.

For Developers:

Automated testing tools

Log & event Analyzers/Management

Application Preformance Management

Health checks/testing

Alerting/incident response

Infrastructure/network monitoring

Metrics hub/dashboards

68.6%

61.6%

54.0%

53.8%

2 －

3 －

4 －

5 －

6 －

7 －

52.6%

40.3%

34.0%

Most Popular Tools

For Operations:

Automated testing tools

Log & event Analyzers/Management

Application Preformance Management

Health checks/testing

Alerting/incident response

Infrastructure/network monitoring

Metrics hub/dashboards

69.6%

68.8%

64.4%

62.2%

2 －

3 －

4 －

5 －

6 －

7 －

59.9%

51.3%

43.9%

The Modern Software Delivery Lifecycle

11

Over 60% of developers and close to
70% of operations use log and event

management tools.

The Modern Software Delivery Lifecycle

12

How do you measure the effectiveness of your team?

57.7%

51.6%

59.9%

51.8%

39.3%

37.9%

38.5%

55.8%

10.7%

10.5%

Direct tie to
business success

Service uptime

Productivity

Quality of code

I don’t know

Developers

Operations / SREs

Measuring Success: All Eyes are
on Code Quality and Productivity
Everyone seems to agree that code quality and productivity
are important. Over half of all respondents indicated that
productivity (55.8%) and code quality (56.9%) are the primary
way they measure their team’s effectiveness.

When it comes to measuring the success of individual
teams, service uptime is the number one thing to evaluate,
according to 55.8% of Ops respondents. In contrast,
developers put even more emphasis on productivity and the
quality of their code.

Productivity and code
quality are the top two

performance indicators for
developers and DevOps.

The Modern Software Delivery Lifecycle

13

Troubleshooting Takes Time

How much of your time do you spend troubleshooting?

10% - 20%42.3%

More than 20%25.8%

Not my responsibility13.6%

Less than 10%18.3%

Despite heavy automation and a strong emphasis on
productivity and quality of code, more than a quarter of
respondents (25.8%) still spend over 20% of their time
troubleshooting code issues – this equates to roughly one
full work day per week (or more) spent troubleshooting
errors. Another 42% of respondents spend 10-20% of their
time troubleshooting (between half and a full day of a work
week). This means that precious time that could be spent on
developing new features to out-innovate competitors ends up
wasted on fixing poor quality code.

of respondents spend more
than a full work day each

week troubleshooting issues

Who is Accountable
for Ensuring Overall

Application Reliability?

The Blame Game:

To better understand how the DevOps transformation affects ownership for
application reliability, the survey examined how development and operations
teams view accountability. In line with the DevOps mentality, the majority of
respondents believe that both teams play a role in keeping software running
how it’s supposed to, and the further organizations move into their DevOps
transformation, the more likely they are to hold the entire team accountable.
But with teams moving at breakneck pace to release code, critical tools
missing, and processes and roles in flux, this collaborative approach can lead
to major confusion.

14

The Blame Game

The Blame Game

When Everyone is Accountable,
No One is Accountable
Shared accountability, while a critical part of a successful DevOps
approach, can often create confusion and miscommunication.
Over two-thirds of respondents (66.9%) believe that their entire
team – including both Dev and Ops – is to blame when an
application breaks or has an error. Additionally, nearly three
quarters of respondents (73%) believe that both Dev and Ops
share responsibility for the overall quality of an application.

At the same time, survey participants noted that having
multiple or unclear owners and lacking clear processes were the
top two challenges they face when it comes to ensuring reliability
and quality of applications. On top of that, a quarter of
participants (23.2%) feel that a lack of clarity around who is
responsible for the quality of code is a leading cause of errors
making it into production.

When an application
breaks or has an error,
who do you blame?

In your opinion, who is
primarily responsible for
the overall quality of an
application or service?

10.4%

66.9%

22.7%

8.7%

73.0%

18.3%

Developers

Operations / DevOps / SRE

Our entire team

Developers

Operations / DevOps / SRE

Our entire team

believe that both Dev and
Ops share responsibility
for the overall quality of

an application.

The Blame Game

16

% of respondents that agree with the above statement according to their
level of DevOps adoption

"The entire team is to blame when an application breaks"

Partial AdoptionNo DevOps adoption

68.8%

60.4%

Fully DevOps

75.2%

Clear Ownership and Proper
Processes are Crucial
Survey participants noted that having multiple or unclear
owners and lacking clear processes were the top two
challenges they face when it comes to ensuring reliability
and quality of applications. A quarter of participants
(23.2%) also feel that a lack of clarity around who is
responsible for the quality of code is a leading cause of
errors making it into production.

The increased collaboration
between Dev and Ops teams
has given rise to challenges
revolving around ownership

for code in production.

The Blame Game

17

Dev and Ops are No Longer
Pointing Fingers
Historically, development and operations have been known to
point fingers at each other when something goes wrong –
but it looks like this is starting to change. Both development
and operations survey respondents indicated they are each
more likely to hold themselves responsible for application
quality over their Dev or Ops counterparts.

Who do developers think is primarily responsible for app quality?

ThemselvesOur entire team

29.7%

62.8%

Operations/ DevOps / SRE

7.5%

Who do operations think is primarily responsible for app quality?

Our entire team

59.9%

Themselves

21.3%

Developers

18.8%

Both development and
operations are more likely to
hold themselves responsible
for app quality over their Dev

or Ops counterparts.

Although both teams claim to share responsibility for
errors in production, Devs spend (unsurprisingly) the most
time troubleshooting, with 72.6% reporting that at least 10%
of their time goes to issue resolution compared to only
56.7% of Ops. Despite reporting a feeling of shared
responsibility for errors and code quality, more than a quarter
of Ops respondents (26.9%) claimed that troubleshooting
isn’t their responsibility.

The Blame Game

18

Code It, Ship It, Own It...Fix it

How much of your time do you spend troubleshooting?

S M T W T F S

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23

28 29 30

24 25 26 27

of Operations / SREs16.5%

of Developers19.4%

<2 days/month

S M T W T F S

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23

28 29 30

24 25 26 27

of Operations / SREs35.5%

of Developers45.9%

2-4 days/month

S M T W T F S

1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23

28 29 30

24 25 26 27

>4 days/month

of Operations / SREs21.2%

of Developers26.7%

* 8.0% of Developers and 26.9% of Operations/SREs
 claimed that troubleshooting is not their responsibility

of developers reported
spending at least 10% of

their time troubleshooting

How Does DevOps Create
Reliabilty Chaos?

The Challenge:

The vast majority of survey respondents, regardless of company size, role or
industry, believe reliability is a priority. Many organizations are adopting DevOps
practices in the hope that it will improve software reliability, but the pressure to
move quickly and the added confusion around accountability can actually create
new hurdles across the software delivery lifecycle. When error-ridden code is
hastily released into production and starts making problems, joint accountability
between teams can make it difficult to determine the root of the issue and who is
responsible for fixing it.

19

The Challenge

The Challenge

20

With the majority of organizations in the early stages or only
midway through their DevOps journey, many lack a formal
process around reliability, leading to confusion around the
role each member of the team plays. This pattern of
disorganization was even more prominent in larger
enterprises than in small companies. Only 27.9% of
organizations with less than 50 employees noted an issue
with multiple/unclear owners, as opposed to 36.5% of
organizations with over 1,000 employees, pointing to the
added challenges that come with scaling.

What are your main reliability and quality challenges?

24.1%We don’t know what we don’t know

31.6%We lack visibility; we have limited
data metrics

41.2%We have no formal process around
ensuring reliability

14.2%Relaibility isn’t a priority

Multiple / unclear owners 34.8%

Our process is inefficient; we spend too
much time getting code into production

27.2%

We don’t have challenges 11.4%

Other 2.6%

More Owners, More Problems

As company size increases,
having multiple or unclear

ownership becomes
more problematic.

The Blame Game

21

Without Proper Tools &
Processes, Chaos Ensues
In alignment with the fast pace and unfamiliar territory that
comes with an ongoing DevOps transformation, a common
theme amongst reliability challenges was the lack of
structure and resources.

In addition to the 41.2% of all respondents that said a lack of
formal process around ensuring reliability was a top
challenge for them, 39.9% said that a lack of resources in pre-
production, including tools and/or people, was a key reason
for errors making it into production.

Without proper tooling and an efficient process in place,
teams don’t have the visibility they need to understand
exactly what’s happening in their environments. Without
insight into what is going on, teams spend more time on
troubleshooting and are still struggling with who to hold
accountable for each issue.

Visibility is a challenge
across the board for IT

professionals:

53.7%53.7%

don't know how many errors
their apps have in a day

31.6%31.6%

reported a lack of visibility
and limited data or metrics is

a main challenge for them

24.1%

struggle with reliability
because they just "don't

know what they don't know"

Conclusion

The transition to DevOps promises increased flexibility, improved operational health,
and deeper collaboration across the software delivery lifecycle – but it also comes
with a new set of challenges.

At the center of this DevOps adoption chaos is the evolving relationship between
development and operations. Many organizations are already taking a shared
approach to accountability for application health, however they still lack the tools
and application visibility needed to know who is ultimately responsible for
addressing and fixing each issue. As the lines between these two teams continue to
blur, organizations will need to focus on adopting tools that deepen visibility into
their applications. Clarifying ownership of applications and services, and avoiding
the “multiple owners = no owner” syndrome is a crucial for even the most bleeding
edge organizations.

The “Dev vs. Ops: State of Accountability” survey revealed that as more
organizations begin the transition to DevOps workflows, defining roles and
processes becomes more difficult and more important. Furthermore, businesses of
all sizes are building and releasing new code and application features faster than
ever before, which adds additional pressure across the entire software delivery
supply chain. Organizations going through the DevOps transformation are more
likely to face visibility challenges that make it difficult to maintain or improve
application quality and reliability.

Dev vs. Ops: The State of Accountability

22

About OverOps

OverOps is a software reliability platform that applies machine learning to
application code as its running to automatically identify anomalies and provide
code-level insights in QA, Staging and Production. By identifying when, where,
and why the code breaks in real time, OverOps helps companies fix application
issues before the customer is affected, as well as prevent them from being
released.

When anomalous failures – such as newly introduced issues, error regressions
and slowdowns – occur in any environment, a complete picture of the code is
provided, including:

• Execution stack, source code and complete variable state
• Previous 250 log statements (including DEBUG- and INFO-level,

even in production)
• Frequency and failure rate for ALL known and unknown errors and exceptions
• Classification of new versus reintroduced errors
• Which release or build is associated with each specific event
• Event analytics

This data allows organizations to create a culture of accountability, where every
team has visibility into what went wrong, eliminating any finger pointing. Not only
does access to this information greatly reduce resolution time for issues in all
environments, it provides deep insight into the overall quality of new deployments
and of the application as a whole. As more organizations aim to innovate faster
and deliver a seamless digital experience for their customers, OverOps helps avoid
costly downtime with minimal performance impact and no need to modify code.

The data collected by OverOps can easily be displayed on any other platform using
OverOps native integration with tools like Splunk, AppD and Grafana for monitoring,
alerting and visualization purposes.

Dev vs. Ops: The State of Accountability

Check out the OverOps Blog and connect with us:

https://twitter.com/overopshq?lang=en
https://www.linkedin.com/company/overops/
https://www.facebook.com/overopshq/
https://www.youtube.com/channel/UC_kVsm0luM18EqXh8b2jeqw
https://medium.com/@overopshq
https://www.overops.com/?utm_source=survey_report&utm_medium=click&utm_campaign=surveyreport
https://www.overops.com/?utm_source=survey_report&utm_medium=click&utm_campaign=surveyreport
https://blog.takipi.com/?utm_source=survey_report&utm_medium=click&utm_campaign=surveyreport

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23

