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Principal Component Analysis (PCA)

« Pattern recognition in high-dimensional spaces

- Problems arise when performing recognition in a high-dimensional space
(e.g., curse of dimensionality).

- Significant impravements can be achied by first mapping the data into a
lower-dimensionality space.
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- The goal of PCA is to reduce the dimensionality of the data while retaining as
much as possible of thawnation present in the original dataset.

* Dimensionality reduction

- PCA allows us to compute a linear transformation that maps data from a high
dimensional space to aver dimensional space.
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» Lower dimensionality basis

- Approximate the ectors by finding a basis in an appropriatedo dimen-
sional space.

(1) Higherdimensional space representation:
X=a1Vy +t Vv, + -+ ayVy
V1, Vo, ..., VN is a basis of thé-dimensional space
(2) Lower-dimensional space representation:
X =bju; +bou, + -+ - + b Uk
Uy, Uo, ..., Uk is a basis of th& -dimensional space

- Note: if both bases he the same size\ = K), thenx = X)

Example
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e Information loss

- Dimensionality Reductiomplies Information Loss !!

- Presene & much information as possible, that is,

minimize ||x — X|| (error)

* How to determine the best laver dimensional space?

The best low-dimensional space can be determined by the "best" eigenvectors of the
covariance matrix of x (i.e., the eigenvectors corresponding to the "largest” eigen-

values -- also called "principal components’").

» Methodology
- SUpposeXy, Xo, ..., X are Nx1 vectors

M

Step1X=— ) X

Step 2: subtract the mead®; = X; — X
Step 3: form the matrixA =[®; P, --- Dy] (NxM matrix), then

compute:
1 M
C=— Y O,® =AAT
M n=1

(samplecovariance matrix, NXN, characterizes thscatter of the data)

Step 4: compute the eigafues ofC: 17 > A4, > -+ > Ay

Step 5: compute the eigaetors ofC: Uq, Uo, ... ,Up

- Since C is symmetric,Us, U, ... ,Uy form a basis, (i.e., gnvector X or
actually(x — X), can be written as a linear combination of the eigetors):

N
X—)_(:b1u1+b2u2+---+bNuN :Zbiui
i=1
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Step 6: dimensionality reduction step keep only the terms correspond-

ing to theK largest eigevalues:
K
X = 2 biu; whereK << N

- The representation & — X into the basisly, U,, ..., Uk is thus

Ob: O
(b, O

0 -0
O O
[y O

e Linear tranf ormation implied by PCA

- The linear tranformatiolR™->RX that performs the dimensionality reduction
IS:
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* An example

(see Castlemas’'gppendix, pp. 648-649)



» Geometrical interpretation
- PCA projects the data along the directions where the datesvthe most.

- These directions are determined by the eigetors of the ceariance matrix
corresponding to the Igest eigevalues.

- The magnitude of the eigestues corresponds to thenance of the data
along the eigerector directions.

* Properties and assumptions of PCA

- The nev variables (i.e.p;’s) are uncorrelated.
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the cvariance ofby’s is:UTCU =

- The cwvariance matrix represents only second order statistics amongdta v
values.

- Since the ne variables are linear combinations of the origiraliables, it is
usally dificult to interpret their meaning.
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* How to choose the principal components?

- To chooseK, use the follaving criterion:

K

2 Ai

i=1

N
2 A
=)

> Threshold (e.g., 0.9 or 0.95)

* What is the error due to dimensionality reduction?

- We saw &ove that an original gctor X can be reconstructed using its the prin-
cipla components:

X—X=

M~

K
biUiCH'k5: EE biui'+ X
i =1

- It can be shan that the lav-dimensional basis based on principal components
minimizes the reconstruction error:

e=|x- Xl

- It can be shan that the error is equal to:

N
e=1/2 zi ii

i=K+1

» Standardization

- The principal components are dependent omutiis used to measure the orig-
inal variables as well as on thange of values thg assume.

- We should alvays standardize the data prior to using PCA.

- A common standardization method is to transform all the datav® &0
mean and unit standardwi&ion:

Xj — U

(u ando are the mean and standardidé&on of X;’s)



 PCA and classification

- PCA is not always an optimal dimensionality-reduction procedure for classifi-
cation purposes:

x5 (minor direction)

Class 2

Perfect
classification
with xs —

x; (principal direction)

Not perfect classification
with x,

» Other problems
- How to handle occlusions?

- How to handle diferent viavs of a 3D object?



