Principal Components Analysis (PCA)

- Reading Assignments

S. Gong et al., Dynamic Vision: From Images to Face Recognition, Imperial College Press, 2001 (pp. 168-173 and Appendix C: Mathematical Details, hard copy).
K. Kastleman, Digital Image Processing, Prentice Hall, (Appendix 3: Mathematical Background, hard copy).
F. Ham and I. Kostanic. Principles of Neurocomputing for Science and Engineering, Prentice Hall, (Appendix A: Mathematical Foundation for Neurocomputing, hard copy).
A. Jain, R. Duin, and J. Mao, "Statistical Pattern Recognition: A Review", IEEE Transactions on Pattern Analysis and Machine Intelligenve, vol. 22, no. 1, pp. 4-37, 2000 (read pp. 11-13, on-line)

- Case Studies

M. Turk and A. Pentland, "Eigenfaces for Recognition", Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991 (hard copy)
K. Ohba and K. Ikeuchi, "Detectability, Uniqueness, and Reliability of Eigen Windows for Stable Verification of Partially Occluded Objects", IEEE Transactions on Pattern Analysis and Machine Intelligenve, vol. 19, no. 9, pp. 1043-1048, 1997 (on-line)
H. Murase and S. Nayar, "Visual Learning and Recognition of 3D Objects from Appearance", Interantional Journal of Computer Vision, vol 14, pp. 5-24, 1995 (hard-copy)

Principal Component Analysis (PCA)

- Pattern recognition in high-dimensional spaces

- Problems arise when performing recognition in a high-dimensional space (e.g., curse of dimensionality).
- Significant improvements can be achieved by first mapping the data into a lower-dimensionality space.

$$
x=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\ldots \\
a_{N}
\end{array}\right]-->\text { reduce dimensionality }-->y=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{K}
\end{array}\right](K \ll N)
$$

- The goal of PCA is to reduce the dimensionality of the data while retaining as much as possible of the variation present in the original dataset.

- Dimensionality reduction

- PCA allows us to compute a linear transformation that maps data from a high dimensional space to a lower dimensional space.

$$
\begin{gathered}
b_{1}=t_{11} a_{1}+t_{12} a_{2}+\ldots+t_{1 n} a_{N} \\
b_{2}=t_{21} a_{1}+t_{22} a_{2}+\ldots+t_{2 n} a_{N} \\
b_{K}=t_{K 1} a_{1}+t_{K 2} a_{2}+\ldots+t_{K N} a_{N} \\
\text { or } y=T x \text { where } T=\left[\begin{array}{cccc}
t_{11} & t_{12} & \ldots & t_{1 N} \\
t_{21} & t_{22} & \ldots & t_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
t_{K 1} & t_{K 2} & \ldots & t_{K N}
\end{array}\right]
\end{gathered}
$$

- Lower dimensionality basis

- Approximate the vectors by finding a basis in an appropriate lower dimensional space.
(1) Higher-dimensional space representation:

$$
\begin{gathered}
x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{N} v_{N} \\
v_{1}, v_{2}, \ldots, v_{N} \text { is a basis of the } N \text {-dimensional space }
\end{gathered}
$$

(2) Lower-dimensional space representation:

$$
\begin{gathered}
\hat{x}=b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{K} u_{K} \\
u_{1}, u_{2}, \ldots, u_{K} \text { is a basis of the } K \text {-dimensional space }
\end{gathered}
$$

- Note: if both bases have the same size $(N=K)$, then $x=\hat{x})$

$$
\begin{gathered}
\underline{\text { Example }} \\
v_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \text { (standard basis) } \\
x_{v}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]=3 v_{1}+3 v_{2}+3 v_{3} \\
u_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], u_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], u_{3}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { (some other basis) } \\
x_{u}=\left[\begin{array}{l}
3 \\
3 \\
3
\end{array}\right]=0 u_{1}+0 u_{2}+3 u_{3} \\
\text { thus, } x_{v}=x_{u}
\end{gathered}
$$

- Information loss

- Dimensionality Reduction implies Information Loss !!
- Preserve as much information as possible, that is,

$$
\operatorname{minimize}\|x-\hat{x}\| \text { (error) }
$$

- How to determine the best lower dimensional space?

The best low-dimensional space can be determined by the "best" eigenvectors of the covariance matrix of x (i.e., the eigenvectors corresponding to the "largest" eigenvalues -- also called "principal components").

- Methodology

- Suppose $x_{1}, x_{2}, \ldots, x_{M}$ are $N_{\mathrm{x} 1}$ vectors
$\underline{\text { Step 1: }} \bar{x}=\frac{1}{M} \sum_{i=1}^{M} x_{i}$
Step 2: subtract the mean: $\Phi_{i}=x_{i}-\bar{x}$
Step 3: form the matrix $A=\left[\Phi_{1} \Phi_{2} \cdots \Phi_{M}\right] \quad(N \mathrm{x} M$ matrix), then compute:

$$
C=\frac{1}{M} \sum_{n=1}^{M} \Phi_{n} \Phi_{n}^{T}=A A^{T}
$$

(sample covariance matrix, $N \times N$, characterizes the scatter of the data)
Step 4: compute the eigenvalues of $C: \lambda_{1}>\lambda_{2}>\cdots>\lambda_{N}$
Step 5: compute the eigenvectors of $C: u_{1}, u_{2}, \ldots, u_{N}$

- Since C is symmetric, $u_{1}, u_{2}, \ldots, u_{N}$ form a basis, (i.e., any vector x or actually $(x-\bar{x})$, can be written as a linear combination of the eigenvectors):

$$
x-\bar{x}=b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{N} u_{N}=\sum_{i=1}^{N} b_{i} u_{i}
$$

Step 6: (dimensionality reduction step) keep only the terms corresponding to the K largest eigenvalues:

$$
\hat{x}-\bar{x}=\sum_{i=1}^{K} b_{i} u_{i} \text { where } K \ll N
$$

- The representation of $\hat{x}-\bar{x}$ into the basis $u_{1}, u_{2}, \ldots, u_{K}$ is thus

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{K}
\end{array}\right]
$$

- Linear tranformation implied by PCA

- The linear tranformation $R^{N}->R^{K}$ that performs the dimensionality reduction is:

$$
\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{K}
\end{array}\right]=\left[\begin{array}{c}
u_{1}^{T} \\
u_{2}^{T} \\
\ldots \\
u_{K}^{T}
\end{array}\right](x-\bar{x})=U^{T}(x-\bar{x})
$$

- An example

- Geometrical interpretation

- PCA projects the data along the directions where the data varies the most.
- These directions are determined by the eigenvectors of the covariance matrix corresponding to the largest eigenvalues.
- The magnitude of the eigenvalues corresponds to the variance of the data along the eigenvector directions.

- Properties and assumptions of PCA

- The new variables (i.e., b_{i} 's) are uncorrelated.

$$
\text { the covariance of } b_{i} \text { 's is: } U^{T} C U=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
0 & 0 & \lambda_{K}
\end{array}\right]
$$

- The covariance matrix represents only second order statistics among the vector values.
- Since the new variables are linear combinations of the original variables, it is usally difficult to interpret their meaning.

- How to choose the principal components?

- To choose K, use the following criterion:

$$
\frac{\sum_{i=1}^{K} \lambda_{i}}{\sum_{i=1}^{N} \lambda_{i}}>\text { Threshold (e.g., } 0.9 \text { or } 0.95 \text {) }
$$

- What is the error due to dimensionality reduction?

- We saw above that an original vector x can be reconstructed using its the principla components:

$$
\hat{x}-\bar{x}=\sum_{i=1}^{K} b_{i} u_{i} \text { or } \hat{x}=\sum_{i=1}^{K} b_{i} u_{i}+\bar{x}
$$

- It can be shown that the low-dimensional basis based on principal components minimizes the reconstruction error:

$$
e=\|x-\hat{x}\|
$$

- It can be shown that the error is equal to:

$$
e=1 / 2 \sum_{i=K+1}^{N} \lambda_{i}
$$

- Standardization

- The principal components are dependent on the units used to measure the original variables as well as on the range of values they assume.
- We should always standardize the data prior to using PCA.
- A common standardization method is to transform all the data to have zero mean and unit standard deviation:

$$
\frac{x_{i}-\mu}{\sigma} \quad\left(\mu \text { and } \sigma \text { are the mean and standard deviation of } x_{i} \text { 's }\right)
$$

- PCA and classification

- PCA is not always an optimal dimensionality-reduction procedure for classification purposes:

- Other problems

- How to handle occlusions?
- How to handle different views of a 3D object?

