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Principal Components Analysis (PCA)

• Reading Assignments

S. Gong et al.,Dynamic Vision: From Images to Face Recognition, Imperial College
Press, 2001 (pp. 168-173 and Appendix C: Mathematical Details, hard copy).

K. Kastleman,Digital Image Processing, Prentice Hall, (Appendix 3: Mathematical
Background, hard copy).

F. Ham and I. Kostanic.Principles of Neurocomputing for Science and Engineering,
Prentice Hall, (Appendix A: Mathematical Foundation for Neurocomputing,
hard copy).

A. Jain, R. Duin, and J. Mao, "Statistical Pattern Recognition: A Review", IEEE
Tr ansactions on Pattern Analysis and Machine Intelligenve, vol. 22, no. 1, pp.
4-37, 2000 (read pp. 11-13, on-line)

• Case Studies

M. Turk and A. Pentland, "Eigenfaces for Recognition",Journal of Cognitive Neu-
roscience, vol. 3, no. 1, pp. 71-86, 1991 (hard copy)

K. Ohba and K. Ikeuchi, "Detectability, Uniqueness, and Reliability of Eigen Win-
dows for Stable Verification of Partially Occluded Objects",IEEE Transactions
on Pattern Analysis and Machine Intelligenve, vol. 19, no. 9, pp. 1043-1048,
1997 (on-line)

H. Murase and S. Nayar, "Visual Learning and Recognition of 3D Objects from
Appearance",Interantional Journal of Computer Vision, vol 14, pp. 5-24, 1995
(hard-copy)
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Principal Component Analysis (PCA)

• Pattern recognition in high-dimensional spaces

- Problems arise when performing recognition in a high-dimensional space
(e.g., curse of dimensionality).

- Significant improvements can be achieved by first mapping the data into a
lower-dimensionality space.
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- The goal of PCA is to reduce the dimensionality of the data while retaining as
much as possible of the variation present in the original dataset.

• Dimensionality reduction

- PCA allows us to compute a linear transformation that maps data from a high
dimensional space to a lower dimensional space.
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or y = Tx whereT =







t11

t21

...

tK1

t12

t22

...

tK2

...

...

...

...

t1N

t2N

...

tKN









-- --

- 3 -

• Lower dimensionality basis

- Approximate the vectors by finding a basis in an appropriate lower dimen-
sional space.

(1) Higher-dimensional space representation:

x = a1v1 + a2v2 + . . . + aN vN

v1, v2, ..., vN is a basis of theN -dimensional space

(2) Lower-dimensional space representation:

x̂ = b1u1 + b2u2 + . . . + bK uK

u1, u2, ..., uK is a basis of theK -dimensional space

- Note: if both bases have the same size (N = K ), thenx = x̂)
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• Inf ormation loss

- Dimensionality Reductionimplies Information Loss !!

- Preserve as much information as possible, that is,

minimize ||x − x̂|| (error)

• How to determine the best lower dimensional space?

The best low-dimensional space can be determined by the "best" eigenvectors of the
covariance matrix of x (i.e., the eigenvectors corresponding to the "largest" eigen-
values -- also called "principal components").

• Methodology

- Supposex1, x2, ..., xM areNx1 vectors

Step 1:x =
1

M

M

i=1
Σ xi

Step 2: subtract the mean:Φi = xi − x

Step 3: form the matrixA = [Φ1 Φ2
. . . ΦM ] (NxM matrix), then

compute:

C =
1

M

M

n=1
Σ ΦnΦT

n = AAT

(samplecovariance matrix, NxN , characterizes thescatter of the data)

Step 4: compute the eigenvalues ofC: 1 > 2 > . . . > N

Step 5: compute the eigenvectors ofC: u1, u2, . . . ,uN

- Since C is symmetric,u1, u2, . . . ,uN form a basis, (i.e., any vector x or
actually(x − x), can be written as a linear combination of the eigenvectors):

x − x = b1u1 + b2u2 + . . . + bN uN =
N

i=1
Σ biui
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Step 6: (dimensionality reduction step) keep only the terms correspond-
ing to theK largest eigenvalues:

x̂ − x =
K

i=1
Σ biui whereK << N

- The representation of̂x − x into the basisu1, u2, ..., uK is thus
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• Linear tranf ormation implied by PCA

- The linear tranformationRN ->RK that performs the dimensionality reduction
is:
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(x − x) = UT (x − x)

• An example

(see Castleman’s appendix, pp. 648-649)
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• Geometrical interpretation

- PCA projects the data along the directions where the data varies the most.

- These directions are determined by the eigenvectors of the covariance matrix
corresponding to the largest eigenvalues.

- The magnitude of the eigenvalues corresponds to the variance of the data
along the eigenvector directions.

• Properties and assumptions of PCA

- The new variables (i.e.,bi ’s) are uncorrelated.

the covariance ofbi ’s is:UT CU =
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- The covariance matrix represents only second order statistics among the vector
values.

- Since the new variables are linear combinations of the original variables, it is
usally difficult to interpret their meaning.
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• How to choose the principal components?

- To chooseK , use the following criterion:

K

i=1
Σ i

N

i=1
Σ i

> Threshold (e.g., 0.9 or 0.95)

• What is the error due to dimensionality reduction?

- We saw above that an original vectorx can be reconstructed using its the prin-
cipla components:

x̂ − x =
K

i=1
Σ biui or x̂ =

K

i=1
Σ biui + x

- It can be shown that the low-dimensional basis based on principal components
minimizes the reconstruction error:

e = ||x − x̂||

- It can be shown that the error is equal to:

e = 1/2
N

i=K+1
Σ i

• Standardization

- The principal components are dependent on theunits used to measure the orig-
inal variables as well as on therange of values they assume.

- We should always standardize the data prior to using PCA.

- A common standardization method is to transform all the data to have zero
mean and unit standard deviation:

xi −
( and are the mean and standard deviation of xi ’s)
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• PCA and classification

- PCA is not always an optimal dimensionality-reduction procedure for classifi-
cation purposes:

• Other problems

- How to handle occlusions?

- How to handle different views of a 3D object?
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