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Modeling Vehicular Traffic Flow using
M/G/C/C State Dependent Queueing
Models

RAJAT JAIN and J. MACGREGOR SMITH

Department of Mechanical and Industrial Engineering, University of Massachusetts, Amherst, Massachusetts 01003

In this paper, M/G/C/C state dependent queueing models are proposed for modeling and
analyzing vehicular traffic flows. Congestion aspects of traffic flow are represented by intro-
ducing state dependent service rates as a function of number of vehicles on each road link.
Analytical models for unidirectional and multisource flows are presented. Finally, queueing
models to analytically determine the optimal capacity and performance measures of the road
links are incorporated into a series of software programs available from the authors.

The management of roadway systems to improve
the quality of vehicular travel has always been one
of the most interesting and challenging problems in
highway traffic design and management. As the
number of vehicles approaches or exceeds the exist-
ing highway capacity, the movement of vehicles de-
teriorates at an exponential rate and, unfortunately,
this results in over-saturated highways which are
not able to efficiently handle the growing demands
of traffic.

Researchers from widely varying disciplines such
as transportation engineering, civil engineering,
and industrial engineering, have utilized different
techniques to study traffic interaction and move-
ment. Some of the analytical techniques that have
been used for analyzing traffic flow along roadways
include capacity analysis (MOSKOWITZ and NEWMAN
1963, BERRY 1977, TRANSPORTATION RESEARCH
BoARD 1985a), shock wave analysis (RICHARDS
1956, FRANKLIN 1961, PIPES 1965, WIRASINGHE
1978), queueing analysis (BELL 1980, KUWAHARA
and NEWELL 1987), and simulation modeling (FOX
and LEHMAN 1967, WIGAN 1969, ELDOR and MAY
1975, TRANSPORTATION RESEARCH BOARD 1981). We
approach the vehicular traffic flow problem from a
queueing theory perspective. Queueing analysis in
the past has mainly been utilized for evaluating
traffic flow using deterministic models (MAY and
KELLER, 1967), for traffic light synchronization
(NEWELL, 1965), for analyzing movement of vehicles
at intersections, and other performance measures
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using traditional queueing models. In this paper, we
develop a generalized M/G/C/C state dependent
queueing model to analyze the performance of a
congested roadway segment. It must be pointed out
here, that other queueing models could be used to
analyze different problems arising in traffic flow.
However, we believe that M/G/C/C state dependent
queueing models with finite capacity (C) can repre-
sent congestion in traffic flow more appropriately
and accurately. This representation captures the
features of roadway segments which can accommo-
date a finite number of vehicles and the deteriora-
tion in service time as a function of the number of
vehicles occupying the roadway.

Over the years, we have developed state-depen-
dent queueing models primarily to analyze move-
ment of pedestrians within facilities such as schools,
hospitals, manufacturing plants and related struc-
tures (YUHASKI and SMITH 1989, CHEAH 1990,
SMITH 1991, CHEAH and SMITH 1994). Our key focus
here is on modeling stochastic traffic flow of vehicles
traversing the roadways and on developing conges-
tion models to study this traffic flow. In addition, we
will illustrate how these queueing models can be
used for determining the extreme values of several
design and control parameters of highway systems.

1. PROBLEM DEFINITION

CONGESTION OCCURS MAINLY as a result of the in-
creased number of vehicles (customers) competing
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for the limited space available on the roadway seg-
ment. Customers driving from any given origin node
to any given destination node tend to choose those
road segments that lie on the route with shortest
travel time. This behavior results in an under-utili-
zation of certain roadlinks while other links are
subjected to more traffic than they are designed to
handle, thereby resulting in congestion of such
links. In essence, an appropriate model needs to be
developed to study the dynamic and stochastic ef-
fects of congestion on the stochastic traffic flow.
However, before we can determine the congestion
effects for the whole road network, we need to dis-
cuss how to model congested flow along a one-way
segment of a traffic network.

Two essential components which can be used to
analyze congestion are:

1. Decay of the service rate within the roadways as a
direct result of increased vehicular traffic de-
mand. In queueing terminology, service rate is
defined as a description of time to complete a
service, and of the number of customers whose
requirements are satisfied at each service event.

2. There is a finite amount of available space within
the roadway segments.

Analyzing these components leads to the question
of how to model this congestion within the roadway
segments. What models have been used in the past:
in theory and in practice? How can we “best” capture
the congestion effects from a queueing theory per-
spective?

Assumptions

Before proceeding to analyze congestion effects,
we make the following assumptions:

1. The arrival process, or pattern of arrivals into the
system, is defined by the probability distribution
of the number of customers or units that appear
at each of the arrival events. For the sake of
argument, we'll examine arrivals as independent
Poisson processes with a rate A. Bursty arrivals
or nonstationary ones are not considered in the
present paper. (Since only one vehicle can enter a
single lane at any one time, we feel that the
individual vehicular arrivals is a reasonable as-
sumption. Another technique would be to look at
the overall road segment where the concept of
platooned arrivals could be used to represent the
flow (ALFA and NEUTS, 1995).)

2. Increasing density of the vehicles within a road-

way link leads to a decay in the service rate of the
segment.
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For any given road segment, we define the follow-
ing parameters, which describe the physical aspects
of the link under consideration.

System Parameters

1. Capacity/ Number of Service Channels: The ca-
pacity of a single road segment is defined to be
the maximum number of vehicles that can be
accommodated on the road link at any given time.
We denote this upper bound on the number of
vehicles by C. It should be noted that we use the
term “capacity” (which refers to number of service
channels and buffer space) in a queueing context
and this “capacity” is not the maximum expected
flow rate (number of vehicles/time unit) as is de-
fined in traffic science. Furthermore, the space
occupied by an individual vehicle on the road
segment represents one queueing “server.” To
clarify further, this “server” starts service as soon
as a vehicle joins the segment and carries the
“service” (the act of traveling) until the end of the
segment is reached.

2. Types of Road Links/Nodes: Different types of
roadways such as multilane freeways, ramps, etc.
represent road links with varying characteristics
in terms of capacity, construction, and design.

3. Service Rates: The service rate for a given road
link is the speed with which the vehicles traverse
that node. Since the average travel speed deteri-
orates with increasing number of vehicles (and
vice versa), the service rate is state-dependent
and depends on the number of vehicles in the
system. We define V, to be the average travel
speed of n vehicles on a road link and A to be the
average travel speed of a lone occupant (A = V).

4. Vehicle Equivalents: There are several different
types of vehicles that utilize the roadways, such as
passenger cars, trucks, buses, and recreational ve-
hicles. For sake of simplicity, these different vehicle
types are assumed to be identical and are termed
passenger car units. A conversion format, described
in (TRANSPORTATION RESEARCH BOARD, 1985b), can
easily be used to convert different vehicle types in
terms proportionate with a passenger car.

The modeling of state-dependent queues origi-
nated with the work of CONWAY and MAXWELL
(1962), who studied the nonlinear effects of increas-
ing traffic on the service rate of a server. This work
was later extended to the multiple-server case by
HILLIER, CONWAY, and MAXWELL (1964).

In their model, if service rate increases, then

Bn=nu,

Copyright © 2001 All Rights Reserved
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where

n =the number of units/customers in the system

i, =the mean service rate when there are n cus-
tomers in the system

1/p=the mean “normal” service time—the mean
time to service a customer when that customer
is the only one in the system

v =the “pressure coefficient”—a constant that in-
dicates the degree to which the service rate
of the system is affected by the system state
(y = 0).

However, this model is not defined for the situa-
tion where increasing traffic results in a deteriora-
tion of service rates, namely for the case when y < 0.
In the following section, we are able to capture this
decaying service rate by developing finite, state-de-
pendent congestion models.

2. CONGESTION MODEL

IN VEHICULAR TRAFFIC FLOW, the vehicle density on
the roadways largely effects the speed of the vehicles
traversing the roadway link. As the vehicular den-
sity increases, the average travel speed of the vehi-
cles deteriorates. Other factors such as number of
lanes, vehicle types, percentage of heavy vehicles,
paving pattern, topography, etc. also affect traffic
flows (Transportation Research Board, 1985b), how-
ever we attempt to describe congestion in terms of
vehicular density veh/mi-lane.

All roadway systems consist of links which have
moving vehicles that interact with each other and
with the highway pavement. To better understand
congestion within roadway networks, we consider a
unidirectional road segment of length (miles), L,
width, W, and consisting of N lanes.

The maximum capacity for a given road-link is an
integral concept with respect to our congestion mod-
eling. Different empirical studies provide different
estimates (ranging from 185-265 veh/mi-lane) for
that vehicular density at which flow comes to a halt
(or jam density). However, the varying conditions/
factors under which different studies were under-
taken makes it impossible to compare one test result
with another. We define this jam density value as a
constant £ veh/mi-lane. We define the capacity of a
roadlink to be the highest integer that is less than &
times the length of the link and the number of lanes
on the link. Thus, the capacity is expressed as,

C=[k*L *N]
where

C = Capacity of the Road link (vehicles),
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k =Constant determined by jam density of appro-
priate context (veh/mi-lane),

L =Length (miles) of the road link, and

N=Number of Lanes on the Road link.

The available empirical traffic flow models in the
existing literature primarily belong to a family of
either Noncongested (Free) flow models or Congested
flow models [refer to EASA and MAY (1980) for de-
tails]. These models describe relationships between
the vehicular density and mean travel speeds. By
carefully approximating and fitting the positions of
three representative points among the curves recre-
ated from the formulas provided in MAY (1990) for
some of the Free flow models based on EDIE (1961),
GREENSHIELDS (1935), DRAKE, SCHOFER, and MAY
(1967), and UNDERWOOD (1961), and for some of the
Congested flow models based on Drake, Schofer, and
May (1967), we were able to develop linear and
exponential relationships for the empirical models.
Our models for roadway traffic flow are based on the
methodology originally developed by Yuhaski and
Smith (1989) for unidirectional flow within build-
ings.

We define,

= Average travel speed for n vehicles within a
road link,
V, =Average travel speed at vehicular density =
20 veh/mi-lane,
V, =Average travel speed at vehicular density =
140 veh/mi-lane,
A =V, = Average travel speed of a lone occupant.

\Z

n

n  =Number of vehicles utilizing the road link.
v, B==Shape and Scale parameters for the exponen-
tial model.

As the number of vehicles (n) approaches the road
link capacity (C), all vehicular traffic flow comes to
ahalt. Since n = C + 1 is an impossible scenario, we
set V,, = 0 for all cases wheren = C + 1. Using A =
V, as the travel speed of a single vehicle (same as
the posted speed limit) and V¢, = 0, we get the
linear relationship as,

A

Figure 1 shows linear model curves plotted for
different values of jam density (¢ = 185, 205, 210,
and 265 veh/mi-lane) where mean speed was consid-
ered as 55 mph.

The empirical curves for vehicular traffic flow
strongly suggest that an exponential relationship
may provide a more accurate approximation for the
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Fig. 1. Linear approximation of empirical traffic flow models at mean speed = 55 mph. MGCC-LIN (a, b, ¢, d) (———); Underwood
(=== ); Edie (—-—- - ); Greenshields (-- -- --); HCM (--- --- ); Drake (---- - - ).

mean travel speed with variation in vehicular den-
sity. Using B and v as scale and shape parameters,
respectively, we developed the following exponential
relationship:

Exponential Model:

rono {53

where
In(V, /A) a-1
v= ln[ln(Vb/A)]/ln(b = 1)’
_ a-—1 N b—-1
B = n(AIV)1% = AV
and,

A=V,=55mph (A= V;=60 mph)
V.=48.0 (V,=50.0)

(Vy=16.0)
a=20*L*N, (a=20%L *N)
b=140*L * N (b=140 L = N).

Figure 2 shows curves of this exponential model
fitted among the empirical relationship curves for a
mean speed of 55 mph.

It should be noted here that other approximation

Vb = 20.0,
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techniques such as weighted nonlinear regression
and piece-wise linear approximations could also
have been used instead of three-point approxima-
tion. However, we believe that, at this stage of re-
search, the impact of any difference between the
results obtained from different approximation tech-
niques would be insignificant.

3. ANALYTICAL MODEL: SINGLE LINK

IN THIS SECTION, we discuss the methodology used in
modeling a unidirectional single road segment as a
queueing system. The road segment under consider-
ation has N lanes, is of length L, and has a capacity
C = [k L NJ.

Suppose that the vehicles arrive to the road link
as a Poisson process with some rate, A. We assume
that the service times of the vehicles follow a general
distribution G and that the service rate, f(n), is
dependent on the number of vehicles (n) in the sys-
tem. This state dependent service rate steps “up” or
“down” to f(n + 1) or f(n — 1) when an arrival or a
departure occurs. The road link, which acts as a
service facility to the vehicles, can be modeled as a
queue with C service channels, which is the same as
the capacity C. In effect, our queueing model is an
M/G/C/C queue with state-dependent service rate.

Because the arrival rates of vehicles are indepen-
dent of the number of vehicles already present on
the road link, in our case, we can define the arrival

Copyright © 2001 All Rights Reserved
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rate to the system, A, suchthat A =A%=A'= ...

AC, where X represents the arrival rate when there

are j vehicles present on the road-link. For the M/

G/C/C state-dependent queue, the steady state prob-

abilities are expressed as follows [interested reader

is referred to Cheah and Smith (1994)].
Forn=1,2,...,C,

[AF]"
n! f(n) f(n - 1) -

Pﬁ[ --f<2>f(1>]”°

where

[ALT
-+ f(2) f(1)

I

So the steady state probabilities for an M/G/C/C
state-dependent queue depend on the mean service
requirement, ¥ = L/A, and the relative service rate
of each server, fi) = V,/V, (fori = 1,2,..., C).

Because the service rates of our queueing model
are directly affected by congestion in the system, we
use the relationships developed in the previous sec-
tion for the linear congestion model and the expo-
nential congestion model to describe f(n).

The linear congestion model linearly relates the
service rate of the servers in the M/G/C/C queueing
model to the number of vehicles in the system. Using

C
Pit=1+ z[i! 60
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Fig. 2. Exponential approximation of empirical traffic flow models at mean speed = 55 mph. MGCC-EXP (——); Underwood (- - -);

the equation for V,, developed earlier, we get

Va

3 _A _ C+1-n
fm) == gy (€ 1= my = (g2

C

)

Using this expression for f(n) in the state probabil-
ities equations, we obtain
|7

P,,=[

[AL/AT
T, JI(C + 1 - IC]

where

[AL/AY

[
P,l=1+ — -
0 2 I, jI(C + 1 - j)/C]

i=1

| |

Note that L is expressed in miles and A in hr™.
The exponential congestion model provides an ex-
ponential relationship between the service rate of
servers in the M/G/C/C queue and the number of
vehicles in the system. Again, using the travel speed
equation developed earlier for the exponential con-

gested model, we get
VvV, A n —1\” ( —1)y
ﬂ”)"ﬁ‘ﬁe"p[‘( B )] e"p[' B ]

SUPTHTHO200 kiR ResTTveY
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Substituting this expression for f(n) in the state
probabilities, we obtain

Sl Rl
ro=ve [ [8) ool 5]

It should be noted here that these steady-state
probabilities can be used to compute performance
measures such as the probability of balking (P, is
obtained by using P, when n = C where C is the
capacity of the node) and ¢throughput (®). Through-
put from a node i is computed as @ = A (1 — P, ),
where A is the effective arrival rate to node i. Also,
the state-dependent M/G/C/C queue is stochastically
equivalent to the state dependent M/M/C/C queue
provided that the mean service rates of the two
queues are equal [the interested reader is referred to
Cheah and Smith (1994)].

P, =

where

3.1 Single Link With Multiple Sources

The model developed above, for a single source
generating flow, can be easily extended to the case
when customers arrive from multiple sources to a
single road link of length L, N lanes, and a jam
density, k. Let Ay, Ay, ..., A, be the arrival rates of
customers from J different sources who have to
travel L, Ly, ..., L; miles, respectively, on the
road link. This case can be modeled as a new single
road link of length L’ having the same number of
lanes (N) and jam density (k) with the new arrival
rate A’ where

=l AL

L= =LA

J
and A= D A

Thus, A' is the sum of all the individual arrival
rates from J different streams, and L’ is the average
distance traveled by all the arrivals from all of the
different sources, calculated as a weighted average
according to the different individual arrival rates A,
Agy ooy A

This new single link can now be solved using the
linear and/or exponential analytical congestion
model presented above for a single road link by replac-
ing the original A and L with A’ and L’ respectively.

3.2 Simulation Experiments

In this section, in order to verify the analytical
results obtained so far, we compare the performance
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measures obtained from the linear and exponential
analytical congestion models with simulation mod-
els. The simulation programs simply represent an
M/G/C/C state-dependent queue which was used to
obtain the queueing performance measures. The lin-
ear and exponential congestion models were coded
into a FORTRAN program called TRLEAM, which
calculates the values of the balking probability when
arriving vehicles find the system saturated P,
(where Py, = Pp), average time in system, average
customers waiting in system, and the throughput
rate ©, given A, L, and N. The simulation models
were developed using SIMAN 1v. Both were run on
VAX machines operating under the VMS Ver 6.1
operating system.

The performance measures used for comparison
purposes are measures commonly used in queueing
theory (the definitions and derivations of such mea-
sures can be found in any queueing theory book
(Gross and Harris (1985))) and are stated as:

1. Average time spent by the vehicles in the given
road segment.

2. Average number of vehicles utilizing the seg-
ment,

3. The probability of balking when entities arrive to
find the segment at capacity (Pp).

4. The throughput rate (0) which is defined as the
number of vehicles departing the roadlink per
time unit. It is noted here that ® can be inter-
preted as: ©@ = Ay = A1 — Pp,).

The experiments carried out were for unidirec-
tional flow on a single road segment. The experi-
ments were run under different values of physical
characteristics (length, number of lanes, capacity) of
the road segment, and for varying values of arrival
rate (A), jam density (k) and free flow speed (A =
V). Tables I and II summarize the results obtained
from analytical models and simulations performed
for fixed free flow speeds of 55 and 60 mph, respec-
tively. It can be seen that the performance measures
obtained from analytical congestion models were
very close to the values obtained using simulation.
Furthermore, careful observation reveals that the
exponential congestion model provides a better ap-
proximation for the performance measures than
does the linear model. The linear congestion model
performs satisfactorily under light traffic and higher
capacity conditions but deteriorates under heavy
traffic or low capacity conditions (as can be observed
in the anomalies occurring in Tables I and II). This
is consistent with the linear congestion curve fitted
to the empirical curves. The linear curve drops rap-
idly to the jam density, whereas the exponential
curve decays slowly.

Copyright © 2001 All Rights Reserved
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TABLE I
Comparison of Simulation and Analytical Results for Speed = 55 mph
A L N k TiS NIS Throughput
(vph) (mi) (lanes) (veh/mi-lane) Model (hrs) (veh.) P [C)]
1000 1 1 220 Simulation 0.02112 20.78002 0 1000
MGCC-EXP 0.021 21.178 0 1000
MGCC-LIN 0.020 20.012 0 1000
2000 1 1 185 Simulation 0.02683 53.49253 0 2000
MGCC-EXP 0.027 53.742 0 2000
MGCC-LIN 3.266 184.970 0.97168 56.64
1 1 220 Simulation 0.02685 53.60046 0 2000
MGCC-EXP 0.027 53.742 0 2000
MGCC-LIN 0.026 50.618 0.025239 1949.522
1 1 265 Simulation 0.02683 53.49253 0 2000
MGCC-EXP 0.027 53.742 0 2000
MGCC-LIN 0.022 43.567 0 2000
1 2 185 Simulation 0.02107 42.00707 0 2000
MGCC-EXP 0.021 42.152 0 2000
MGCC-LIN 0.020 40.901 0 2000
1 2 265 Simulation 0.02107 42.00707 0 2000
MGCC-EXP 0.021 42.152 0 2000
MGCC-LIN 0.020 39.281 0 2000
1 3 220 Simulation 0.01991 39.70886 0 2000
MGCC-EXP 0.020 39.837 0 2000
MGCC-LIN 0.019 38.628 0 2000
1 3 265 Simulation 0.01991 39.70886 0 2000
MGCC-EXP 0.020 39.837 0 2000
MGCC-LIN 0.019 38.202 0 2000
4000 0.25 1 200 Simulation 0.01786 47.87804 0.3279229 2688.3084
MGCC-EXP 0.018 47.876 0.329822 2680.712
MGCC-LIN 0.213 49.933 0.9415 233.998
1 1 220 Simulation 0.08558 209.68657 0.36105577 2555.77692
MGCC-EXP 0.089 218.392 0.386 2455.077
MGCC-LIN 3.944 219.986 0.9861 55.782

TIS, average time in system; NIS, average number in system.

It must be noted here that the simulation pro-
grams even for a single node (modeled as a state-
dependent queue) and relatively small numerical
values took an excessive amount of CPU time and
disk space. A single road link model of dimensions
L = 1 mile, N = 1, with 2 = 185 veh/mi-lane and
A = 2000/hr, when simulated for 20 time units, took
approximately 44 hours of CPU time with an I/O
count of over (1.7 X 107). On the other hand, ana-
lytical FORTRAN programs for larger systems with
higher traffic volumes ran in under a second.

3.3 Model Validation

In this section, we attempt to validate our conges-
tion models by undertaking experiments based on
field data documented in a report published by FED-
ERAL HIGHWAY ADMINISTRATION (1976).

This set of field data was collected along Santa
Monica Freeway (East- and Westbound) at two dif-
ferent time points (Federal Highway Administra-
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tion, 1976) by dividing the length of the freeway into
“Stations.” Using the input parameters for this data
set in our program TRLEAM, we were able to obtain
and compare the performance measure from field
data (Average Number of Vehicles in the System)
with our linear and exponential congestion models.
The results are summarized in Table III. It was
found that the linear and exponential congestion
models provide reasonably close values for the per-
formance measure for some of the stations. In all of
the other cases, though, it can also be seen that the
congestion models underestimate the values of the
performance measure.

It should be noted here, that finding studies con-
taining “complete” field data information proved to
be an extremely difficult task. While some studies
provided us with input parameters (length, lanes,
jam density, speed, arrival rate), they lacked infor-
mation regarding the output/performance measures
(average number in system, average time spent in

CopYINT e 200 Al UG Reserved
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TABLE II
Comparison of Simulation and Analytical Results for Speed = 60 mph
A L N k TIS NIS Throughput
(vph) (mi) (lanes) (veh/mi-lane) Model (hrs) (veh.) Praix (®)
1000 1 2 220 Simulation 0.01885 18.78383 0 1000
MGCC-EXP 0.019 18.859 0 1000
MGCC-LIN 0.017 17.353 0 1000
2000 1 1 185 Simulation 0.02859 57.01717 0 2000
MGCC-EXP 0.029 57.306 0 2000
MGCC-LIN 2.963 184.934 0.968795 62.408
1 2 185 Simulation 0.02114 42,15150 0 2000
MGCC-EXP 0.021 42.305 0 2000
MGCC-LIN 0.019 37.057 0 2000
1 2 220 Simulation 0.02114 42.15150 0 2000
MGCC-EXP 0.021 42.305 0 2000
MGCC-LIN 0.018 36.343 0 2000
1 3 220 Simulation 0.01954 38.96945 0 2000
MGCC-EXP 0.020 39.101 0 2000
MGCC-LIN 0.018 35.216 0 2000
4000 1 2 220 Simulation 0.02828 112.85772 0 4000
MGCC-EXP 0.028 113.275 0 4000
MGCC-LIN 0.021 82.007 0 4000

TIS, average time in system; NIS, average number in system.

system, flow while departing the segment, probabil-
ity of balking/blocking, etc.), and vice-versa. The
field data study used in this paper, while providing
most of the required input/output values, provided
the values for observed densities (or perhaps, opti-
mal densities) rather than jam densities. Hence, we
were forced to use observed densities in our compu-
tations while comparing the performance of our con-
gestion models with the field data. Another key
point worth mentioning while validating theoretical
models with field data, is that several varying “fac-
tors” (such as road conditions, weather, visibility,
etc.) can affect the traffic flow and collection of data
at any given segment of freeway. So no singular
theoretical generalized model could be expected to
accurately compare with the field data collected at
any given time.

3.4 Example Problem

In this section, we demonstrate, by way of a sim-
ple example, how the analytical congestion models
developed earlier can be used to obtain performance
measures for vehicular traffic networks. Consider
the simple 11-node network shown in Figure 3, ob-
tained by transforming some original road network
by using the method described earlier.

Each node in this network represents a single
road-link having some dimensional features and can
be modeled as an M/G/C/C state-dependent queue
where the capacity, C (= number of service chan-
nels), is calculated using capacity formula derived

RIGHTS L

earlier in Section 3. Vehicles arrive to this network
as a Poisson process with some rate A at node 1 and
depart the system from node 11 with a throughput
rate ©.

Several design and control issues arise while look-
ing at this network. Some of the issues are:

e What is the shortest route from node 1 to node
11? What are the k-shortest paths?

e On an average, how much time is spent by a
vehicle while traversing this network?

e How many vehicles can depart per time unit,
and what is the utilization of each road-link?

e Could changes in dimensional features of some
of the road-links (such as increasing/decreasing
the number of lanes, controlling the number of
vehicles allowed to enter the system, preestab-
lished routing for certain percentage/type of ve-
hicles, etc.) lead to improvement in the perfor-
mance of this network?

Because the analytical congestion models devel-
oped in this paper are for a single road link, we can
solve this example network by studying each node
independently. It must be mentioned here that we
are aware of possible blocking occurring between the
links in the network which cannot be appropriately
included (for optimization purposes) while comput-
ing the performance of the whole network unless
further model refinements are imposed (See Cheah
and Smith (1994) for one way to accommodate the
blocking between the links using our M/G/C/C

Copyright © 2001 All Rights Reserved
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TABLE III
Santa Monica Freeway East and Westbound at Time = 07:01:00 and 07:01:20
Length Lanes Arrival Rate Jam Density Speed NIS
Station Location L (mi) N A (vph) (veh/mi-lane) (mph) Model (veh)
SM16E 0.47 4 7200 33.91 53.17 Field Data 60
MGCC-LIN 62.98
MGCC-EXP 59.82
0.47 4 7080 33.29 52.46 Field Data 59
MGCC-LIN 61.98
MGCC-EXP 58.74
SM17E
Lane 1 0.60 1 1980 37.96 52.46 Field Data 33
MGCC-LIN 21.95
MGCC-EXP 19.78
Lane 3 0.60 1 1680 32.98 51.74 Field Data 28
MGCC-LIN 18.94
MGCC-EXP 16.67
SM18E
Lane 2 0.44 1 1980 38.58 51.58 Field Data 33
MGCC-LIN" 15.93
MGCC-EXP 14.02
SM17W
Lane 1 0.60 1 1320 25.82 55.58 Field Data 22
MGCC-LIN 14.91
MGCC-EXP 12.75
SM17E
Lane 1 0.60 1 2040 40.13 51.19 Field Data 34
MGCC-LIN 23.95
MGCC-EXP 21.42
Lane 3 0.60 1 1560 31.11 50.66 Field Data 26
MGCC-LIN 17.94
MGCC-EXP 15.56
SM18E ;
Lane 2 0.44 1 2040 39.51 51,91 Field Data 34
MGCC-LIN 16.93
MGCC-EXP 14.91
SM17W
Lane 1 0.60 1 1380 27.38 50.22 Field Data 23
MGCC-LIN 15.93
MGCC-EXP 13.61

NIS, average number in system,

model). However, we feel that the purpose of this
example is to show the usage of our analytical mod-
els as a fundamentally new approximation tool for
studying vehicular traffic flows.

With the assumption of node independence, sev-
eral routes can be generated deterministically, and
the performance measures for the routes be com-

Fig. 3. Example network.
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puted for each node using the analytical congestion
models developed in this paper. The vehicles, after
entering the network at node 1, traverse the nodes
on the designated route, and depart from the net-
work through node 11. The capacities of the nodes
can be varied (for example, by varying the number of
lanes or the arrival rate to node 1) to study the
effects on performance measures (see Section 4 for a
detailed discussion). For each route, performance
measures such as the average time spent in the
system by the vehicles, the throughput rate, and
utilization factor for each node can be calculated. All
calculations are done using the FORTRAN pro-
grams written for our analytical congestion models
(refer to Section 3.2). Such analyses, using analyti-
cal congestion models, can provide valuable insight
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about the performance of the road-network and can
be helpful in design and control of the process.

4. OPTIMIZATION AND SENSITIVITY ANALYSIS

IT IS INTERESTING to study how the variation in the
values of certain variables affects the values of some
other variables. In the context of roadway systems,
one could be interested in finding that value of the
arrival rate A which maximizes the throughput (®)
for a given link. Another interesting issue is that,
given the arrival rate A and fixing one, and only one, of
the other dimensions (either L or N), what effect do the
variations in the values of the unfixed variable have on
the blocking/balking probability (Py,y). This kind of
analysis helps in determining the sensitivity of design
and control variables of the system with respect to the
behavior of the remaining variables. In the next sub-
sections, we attempt to address these issues.

4.1 A Analysis

The two issues explored in this section are the
effects of arrival rate (A) on the balking probability
and the system throughput. Given dimensions of the
roadway segment and an upper bound on the block-
ing probability, is there a value of A that maximizes
the throughput? Which value of A can be used to
achieve the upper bound on P, ?

The question of finding that A which maximizes
throughput is of practical importance because
knowledge of A* at which maximum throughput is
achieved helps in making routing decisions, because
we can accordingly control the arrival stream to the
road link, thereby achieving overall optimization.
Using the program TRLEAM to compute the values of
Py, we can calculate the throughput () as

0 = A(1 = Puand)

As the arrival rate to the network increases, the
probability of balking customers also increases, with
resulting changes in ®. By plotting curves such as
those shown in Figures 47, we are able to find the
value of A* at which O is maximized. It can be seen
by comparing the linear congestion curves (Figs. 4
and 5) and exponential congestion curves (Figs. 6
and 7) that the value of A drops more rapidly in
linear congestion than in exponential case once A* is
achieved.

As mentioned earlier, TRLEAM can be used to com-
pute the value of the blocking probabilities for given
dimensions of L and N. By plotting the curves of
constant capacity (see Figs. 8 and 9) for the road link
with p = Mp, on the x-axis and Py,y, on the y-axis,
we can determine the value of A. Since the value of
Py is given and u, can be calculated using
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Fig. 4. Linear congestion with L = 1 miand N = 1.

wy = A/L = V,/L, we can compute the arrival rate
as A = pu;.

From Figures 8 and 9 we can see that the curves
with higher capacities have lower values of Py .
Also, linear congestion curves attain sharper bends
and at higher P, than those corresponding to the
exponential congestion model. Furthermore, linear
model curves approach P, = 1 asymptotically
much faster than the exponential curves.

Another way to determine the arrival rate is by
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Fig. 5. Linear congestion with L = 1 mi and N = 2.
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Fig. 6. Exponential congestion with L = 1miand N = 1.
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Fig. 7. Exponential congestion with L = 1 mi and N = 2,

using a FORTRAN program called TRLESLAM. Given
the values of the road link length L, the number of
lanes N, and the desired upper bound on the balking
probability, TRLESLAM calculates the optimal value
of the arrival rate, A, by using bisection as a unidi-
mensional search technique over many values of A.
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Fig. 8. Linear congestion with varying capacities - p vs. Pyay..
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Fig. 10. Three nodes in series topology.

4.2 N-Variations

Another variable of interest is the number of lanes
on the road segment (). Provided the arrival rate
for a segment has been predetermined, and the val-
ues of L and P,y are fixed, we can study the effects
of increasing or decreasing the number of lanes on
system performance. This variation affects the road-
link capacity and hence affects the congestion expe-
rienced on the road-link, which is useful to make de-
sign and construction decisions of whether or not one
or more lanes need to be added to help ease congestion.

A FORTRAN program named TRLESN, available
from the authors, can calculate the optimal value for
number of lanes given the arrival rate, the road link
length, and the desired upper bound on the balking
probability.

Another method is to utilize graphs such as those
shown in Figures 8 and 9. These graphs are drawn
using the data output collected by running TRLEAM
program. From Figures 4 and 5 for linear conges-
tion, one can see how changes in N from one lane to
two lanes lead to changes in the throughput from
the link. Similar inferences can be drawn for expo-
nential congestion from Figures 6 and 7. In both the
cases, throughput appears to almost double when
one lane is added.

5. BLOCKING FLOWS

SO FAR IN THIS PAPER we have developed, and stud-
ied in great detail, congestion models to capture the
effects of congestion on the performance of a single
road segment. This allowed us to explore each road
segment independently and to compute performance
measures of each node independently as well. When
more than one road segments are studied together,
the assumption of independence is no longer valid. A
saturated downstream node affects the performance
of the upstream node. In this situation, the down-
stream node is called the bottleneck node. For illus-
trative purposes, Figure 10 presents three road seg-
ments in a series topology. In this scenario, if the
downstream node 3 experiences blocking, either due
to heavy traffic or low capacity, it will have a negative
impact on the performance of the upstream nodes 1
and 2. How can this blocking be accommodated in the
context of our modeling approach? In this section, we
briefly present some of our current work useful in

COPYITONT © 20071 AT RIgNS Reserved
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TABLE IV
Simulation versus Analytical for Three Node Series Topology
A L N by
vph mi veh/mi-lane mph Speed* Model NIs! Plax NIS? ) NIS? P
1999 (0.5, 0.5, 0.5) (4,4, 4) (185, 185, 185) (65, 65, 65) Simu 16.35 0.50 8.14 048 7.20 0.00
Exp 16.26 0.49 8.07 0.49 7.16 0.00
1999 (0.75, 0.75, 0.75) 3,3,3 (210, 210, 210) (58.5,58.5,58.5) Simu 28.10 0.00 28.10 0.00 28.10 0.00
Exp 27.92 0.00 27.92 0.00 27.92 0.00
2999 (0.5,0.5,0.5) (4,4,4) (185, 185, 185) (65, 65, 65) Simu 25.24 049 12,76 0.48 10.81 0.49
Exp 250.17 0.47 12.70 0.48 10.79 0.49
2999  (0.75, 0.75, 0.75) @3,3,3) (210, 210, 210)  (58.5, 58.5, 58.5) Simu 44.12 0.00 44.12 0.00 44.12 0.00
Exp 44.08 0.00 44.08 0.00 44.08 0.00
5999 (0.5, 0.5, 0.5) 4,4,4) (185, 185, 185) (65, 65, 65) Simu 5640 050 270.26 048 17.21 048
Exp 56.27 0.47 270.12 048 17.11 0.47

NIS, average number in system.

addressing the issue of the effect of downstream bot-
tleneck nodes on the upstream nodes.

For simple queueing networks, exact analytical
methods can usually be applied to obtain the neces-
sary performance measures. However, if a queueing
network model does not possess a product form so-
lution, then one relies on approximation approaches.
The complexity of M/G/C/C state dependent queue-
ing models makes it impossible to use direct analyt-
ical methods. The approximation approach under-
taken in our research, for the purposes of analyzing
more than one road segment (queueing node), is
called the generalized expansion method, which was
first developed by KERBACHE and SMITH (1987). The
generalized expansion method is a robust and effec-
tive approximation approach which is characterized
to be a combination of Repeated Trials and Node-by-
Node decomposition solution procedures. This
method expands the original queueing network by
introducing an artificial holding node preceding
each blocking node. A detailed discussion on the
intricacies of the generalized expansion method can
be found in Kerbache and Smith (1987). The current
work uses a set of simultaneous nonlinear equations
generated by the generalized expansion method to
capture the effect of blocking and to obtain the per-
formance measures of all the road segments for the
vehicular traffic flow problem.

In Table IV, we present a sample of the results
obtained for a 3-node series topology where each
road segment has identical dimensions with the ar-
rival rates to the first node taking on the values of
A = 1999 vph, 2999 vph, and 5999 vph. The perfor-
mance measures for each road segment were com-
puted using FORTRAN program called SERIES
which solves the set of simultaneous nonlinear equa-
tions generated by the generalized expansion
method for tandem queues. The analytical numeri-
cal results were compared with simulation runs per-
formed using SIMAN IV. Both simulation and analyt-

i,

ical experiments were run on VAX machines
operating under VMS Ver 6.1 operating system. The
performance measures used for comparison were:

1. Average number of vehicles utilizing road seg-
ment,

2. The probability of balking at each road segment
when entities arrive to find segment i at capacity
(Phane)-

As can be seen from the tabulated experiments,
the analytical model using generalized expansion
method provides very close results to the simulation
output. It appears that, in almost all of the cases, the
analytical approach slightly underestimates the per-
formance measures. Furthermore, as we had ob-
served in the simulation experiments for a single
road link, the simulation experiments for the 3-node
series topology took an excessive amount of CPU
time (an average of five days worth of CPU time) and
disk space while the analytical programs using
FORTRAN ran in under a second. The same tech-
nique is being employed by the authors to analyze
split and merge topologies as well, and more de-
tailed results of this work will appear in future
publications.

6. SUMMARY AND CONCLUSIONS

IN THIS PAPER, we studied the dynamic and stochas-
tic effects of congestion on vehicular traffic flow by
using M/G/C/C state-dependent queueing models.
Linear and exponential models with state depen-
dent service rate, depending on the number of cus-
tomers in the system, were developed to account for
the decay in the service rate of a unidirectional
single road segment. These analytical models pro-
vide a fundamentally new tool to an analyst for not
only calculating the performance measures for road
segments, but also for making design and control
decisions for roadways. Finally, computer programs
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written in FORTRAN-77, for implementation of the
mathematical models described in the paper, are
available upon request from the authors.

Further extensions of this work include modeling
traffic intersections as merge and split topologies,
studying networks under heavy congestion where
blocking between adjacent traffic segments occurs,
and routing within vehicular evacuation networks.
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