import numpy as np class Perceptron(object): def __init__(self, eta=0.01, n_iter=10): self.eta = eta self.n_iter = n_iter def fit(self, X, y): self.w_ = np.zeros(1 + X.shape[1]) self.err_ = [] for _ in range(self.n_iter): err = 0 for xi, target in zip(X, y): update = self.eta * (target - self.predict(xi)) self.w_[1:] += update * xi self.w_[0] += update err += int(update != 0.0) self.err_.append(err) return self def net_input(self, X): return np.dot(X, self.w_[1:]) + self.w_[0] def predict(self, X): return np.where(self.net_input(X) >= 0.0, 1, -1)