- 3. Consider a general 2-stage and a general 3-stage explicit Runge-Kutta stencil.
 - (a) Find a solution for the various Runge-Kutta coefficients such that k_1 and k_2 for both stencils coincide. Note that the b_i coefficients for each method are not necessarily the same.

(b) Construct an adaptive stepsize solver based on these two stencils. Use it to calculate y(1) for the initial value problem

$$y' = -y, \quad y(0) = 1.$$

Notice that the size of the last step has to be manually selected so the last value of x_i is exactly equal to 1. How many steps are required to achieve a error of 10^{-6} in the numerical value of y(1)?