

5/27/2004 Revision A - 1 -

Application Note AN2147

Interfacing to a Graphics LCD from PSoC

Author: Pham Minh Tri
Associated Projects: Yes

Associated Part Family: CY8C27xxx
PSoC Designer Version: 4.0

Associated Application Notes:

Summary
This Application Note describes how to control a graphic LCD in a PSoC application.

Introduction
A graphic LCD can be an inexpensive, easy-to-
control, powerful solution for the display of
information to a user. It can provide both text and
information from an application. This Application
Note shows how to control a graphic LCD using a
PSoC device.

Specifications include:

o 128x64 KS0108-controlled graphic LCD
o 10 kΩ center-tapped resistor
o 1 µF capacitors

Graphic LCD
This application uses a DMC12864 128x64
graphic LCD with two built-in KS0108 LCD
drivers (one for the left half of the display and one
for the right). Thus, the information presented
here will cover LCDs with KS0108 and
compatible drivers (e.g., Hitachi HD61202).

The KS0108 drivers are easy to implement and
most commonly used for dot-matrix graphic
LCDs. They behave almost the same as a
DDRAM. It is assumed that the reader knows
how the interface works since it is beyond the
scope of this Application Note. This means that
basic things like reading from/writing to DDRAM,
checking the busy flag, etc., will not be covered
here.

One can think of a 128x64 LCD as having 1024
bytes of memory, every bit of which is visible.
The display is split logically in half. It contains two
drivers; one controls the left half of the display,
the other control the right half. The former is
selected by chip-select signal CS1, the latter by
CS2. Each driver must be addressed
independently. Each half consists of 8 horizontal
pages which are 8 bits (1 byte) high. The page
addresses, 0-7, specify one of the 8 pages. This
is illustrated in Figure 1.

PAGE 0 64 bytes (columns) x 8 bits
PAGE 1

PAGE 3
PAGE 4
PAGE 5
PAGE 6
PAGE 7

PAGE 0
PAGE 1
PAGE 2

D0
D1
D2
D3
D4
D5
D6
D7

PAGE 2
PAGE 3
PAGE 4
PAGE 5
PAGE 6
PAGE 7

64 bits 64 bits

64 bits

Controller #2 CS1=1, CS2=0Controller #1 CS1=0, CS2=1

Figure 1. Page Address of a Graphic LCD

AN2147

5/27/2004 Revision A - 2 -

CS1 and CS2 are active-low in most LCDs.
However, in some rare cases they are active-
high. The designer should check the LCD’s data
sheet in cases of uncertainty. This Application
Note assumes chip-selected signals are active-
low.

KS0108 Commands
Table 1 shows the KS0108 commands taken
from the KS0108’s data sheet. These drivers do
not have text capability and the commands are
few and simple.

Y Address (0-63)
The Y address counter designates the address of
the internal DDRAM. An address is set by the
instruction and automatically increased by 1 by
read or write operations of display data. Y
address 0 is the left-most byte, and Y address 63
is the right-most byte of a page.

X Address (0-7)
This is the page address and has no count
function.

Display Start Line (0-63)
The display start line register specifies the line in
RAM that corresponds to the top line of the LCD
panel when displaying contents in display data
RAM on the LCD panel. It is used for scrolling the
screen.

Table 1. KS0108 Commands Taken from the KS0181 Data Sheet

Instruction RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 Function

Display
ON/OFF

L L L L H H H H H L/H Controls the display on or
off. Internal status and
display RAM data is L: Off,
H: ON.

Set
Address

L L L H Y Address
(0-63)

Sets the Y address in the Y
address counter.

Set Page (X
Address)

L L H L H H H Page
(0-7)

Sets the Y address at the X
address register.

Display
Start Line

L L H H Display Start Line
(0-7)

Indicates the display data
RAM displayed at the top of
the screen.

Status
Read

L H B
U
S
Y

L ON/
OFF

R
E
S
E
T

L L L L Read Status.
Busy: L: Ready
 H: In Operation
ON/OFF: L: Display ON
 H: Display OFF
RESET: L: Normal
 H: Reset

Write
Display
Data

H L Write Data Writes data (DB0-7) into
display data RAM. After a
writing instruction, Y
address is automatically
increased by 1.

Read
Display
Data

H H Read Data Reads data (DB0-7) from
display data RAM to the
data bus.

AN2147

5/27/2004 Revision A - 3 -

Pin Assignment
The LCD consists of 20 pins, the functions of
which are described in Table 2. The power
supply for the graphic LCD comes from VSS and
VDD. Vee is the LCD’s negative output voltage
(-10V). It is used in combination with VDD to
produce contrast-adjust voltage. A block diagram
for the LCD’s connection for contrast adjustment
is shown in Figure 2.

 LCD

VDD

Vee

V0

VDD-V0

VR

+5V

-10V

Figure 2. LCD Connection for Contrast Adjustment

Table 2. Pin Assignment

Pin Symbol Function
1 VSS Power Supply (GND)
2 VDD Power Supply (+5V)
3 V0 Contrast Adjust
4 RS Instruction/Data Register Select
5 R/W Data Read/Write
7-14 DB0-DB7 Data Bus Line
15 CS1 Selection Signal for Chip1
16 CS2 Selection Signal for Chip2
17 RST Reset
18 Vee Negative Output (-10V)
19-20 A, K Power Supply for LED Backlight

The LCD can be reset by holding RST low for at
least 100 ns. When it is reset, the display is off
and the display start line register becomes 0. The
content is not affected. While RST is low, no
further command is executed.

The LCD’s backlight is controlled by pins 19(A)
and 20(K).

LCD

LED Back-light 4.05V 5V
A

K

Figure 3. Connection for Backlight

The remaining signals of the LCD (i.e., RS, E,
R/W, CS1, CS2 and data bus DB0-DB7) are
used to control the KS0108. Note that DB0-DB7
are input/output pins. Their respective PSoC pins
should be in High-Z mode before a read
operation. Similarly, before a write operation,
their respective PSoC pins should be in Strong
mode.

PSoC Implementation
The implementation is written in ‘C’. The CPU
speed is configured at 3 MHz. The software-
controlling interface for the graphic LCD is
implemented in 2 levels. Level 1 provides basic
functions for reading from and writing to the LCD
drivers. Level 2 provides routines for execution of
KS0108 commands listed in Table 1.

The descriptions of the routines implemented in
Level 1 are listed in Table 3.

Table 3. Level 1 Routines

Routine Description

GLCD_reset Reset the LCD

GLCD_read_status Read current status of a driver

GLCD_write_ins Write an instruction to a driver

GLCD_read_data Read a data byte from a driver

GLCD_write_data Write a data byte to a driver

The descriptions of the routines implemented in
Level 2 are listed in Table 4.

Table 4. Level 2 Routines

Routine Description

GLCD_IsBusy Check if LCD is busy

GLCD_IsDisplay Check if LCD display is on

GLCD_Display Turn ON/OFF LCD display

GLCD_SetYAddress Set Y address of a driver

GLCD_SetXPage Set X page of a driver

GLCD_StartLine Set LCD display’s start line

AN2147

5/27/2004 Revision A - 4 -

Circuit Schematic

P0[7]
P0[6]
P0[5]
P0[4]
P0[3]
P0[2]
P0[1]
P0[0]

P1[7]
P1[6]

P1[4]
P1[3]
P1[2]
P1[1]
P1[0]

P2[7]
P2[6]
P2[5]
P2[4]
P2[3]
P2[2]
P2[1]
P2[0]

DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0

E
/RST
R/W
RS

/CS2
/CS1

P1[5]

Vcc

Vss

SMP
Xres

VddVdd

Vdd

Vo

A (LCD BL)
K(LCD BL)

Vdd

Vee

Vdd

14

13

12

11

10

9

8

7

6

17

5

4

16

15

19

20Vss

2

3

18

1

1

27

2

26

3

25

4

24

10

18

17

12

16

13

15

11

5

23

6

22

7

21

8

20

28

14

9

19

1µF

1µF

1µF

10
K

LCD PSoC

Figure 4. Schematic

main.c Source

#include <m8c.h>
#include "logo.h"

//--
// DMC12864 level-1 routines
//--

//---
// Reset the LCD
//---
void GLCD_reset()
{
 BYTE i;
 PRT1DR = 0x00; // pull down reset
 for(i = 0; i < 100; i++); // delay
 PRT1DR = 0x23; // pull up reset
}

//---
// Read the current status of a driver
// drv=
// 0: left driver
// 1: right driver
//---
BYTE GLCD_read_status(BYTE drv)
{
 BYTE x;
 PRT1DR = drv? 0x29: 0x2A;

AN2147

5/27/2004 Revision A - 5 -

 PRT0DM0 = 0x00; // turn off port 0's output
 PRT0DM1 = 0xFF;
 PRT1DR |= 0x80; // turn E on
 x = PRT0DR; // read status
 PRT1DR &= 0x7F; // turn E off
 return x;
}

//---
// Write an instruction to a driver
// drv=
// 0: left driver
// 1: right driver
//---
void GLCD_write_ins(BYTE drv, BYTE ins)
{
 PRT1DR = drv? 0x21: 0x22;
 PRT0DR = ins; // write instruction
 PRT0DM0 = 0xFF; // turn on port 0's output - strong mode
 PRT0DM1 = 0x00;
 PRT1DR |= 0x80; // turn E on
 PRT1DR &= 0x7F; // turn E off
}

//---
// Write data to a driver
// drv=
// 0: left driver
// 1: right driver
//---
void GLCD_write_data(BYTE drv, BYTE data)
{
 PRT1DR = drv? 0x25: 0x26;
 PRT0DR = data; // write data
 PRT0DM0 = 0xFF; // turn on port 0's output - strong mode
 PRT0DM1 = 0x00;
 PRT1DR |= 0x80; // turn E on
 PRT1DR &= 0x7F; // turn E off
}

//---
// Read data from a driver
// drv=
// 0: left driver
// 1: right driver
//---
BYTE GLCD_read_data(BYTE drv)
{
 BYTE x;
 PRT1DR = drv? 0x2D: 0x2E;
 PRT0DM0 = 0x00; // turn off port 0's output
 PRT0DM1 = 0xFF;
 PRT1DR |= 0x80; // turn E on
 x = PRT0DR; // read data
 PRT1DR &= 0x7F; // turn E off
 return x;
}

//--
// DMC12864 level-2 routines
//--

//---
// Check if the LCD display is on
// assumming driver are both on or both off
//---
BOOL GLCD_IsDisplay()
{
 return (GLCD_read_status(0) >> 5) & 1;
}

//---
// Check if a driver is busy
//---
BOOL GLCD_IsBusy(BYTE drv)
{

AN2147

5/27/2004 Revision A - 6 -

 return ((char)GLCD_read_status(drv)) < 0;
}

//---
// Turn ON/OFF the LCD display (both drivers)
//---
void GLCD_Display(BOOL on)
{
 BYTE x = 0x3E | (on & 1);
 GLCD_write_ins(0, x);
 GLCD_write_ins(1, x);
}

//---
// Set Y address of a driver
//---
void GLCD_SetYAddress(BYTE drv, BYTE addr)
{
 GLCD_write_ins(drv, 0x40 | (addr & 63));
}

//---
// Set X page of a driver
//---
void GLCD_SetXPage(BYTE drv, BYTE page)
{
 GLCD_write_ins(drv, 0xB8 | (page & 7));
}

//---
// Set start line of both drivers
// Use this for scrolling the LCD
//---
void GLCD_StartLine(BYTE line)
{
 BYTE x = 0xC0 | (line & 63);
 GLCD_write_ins(0, x);
 GLCD_write_ins(1, x);
}

//--
// Main module
//--
void main()
{
 // Insert your main routine code here.
 BYTE i, j, line;
 BYTE x;

 GLCD_reset();

 GLCD_Display(1);

 // write down Cypress logo to fill up the screen
 GLCD_SetYAddress(0,0);
 GLCD_SetYAddress(1,0);
 for(i = 0; i < 8; i++)
 for(j = 0; j < 64; j++)
 {
 GLCD_SetXPage(0,i);
 GLCD_write_data(0,i<4?logo[j+i*64]:0x00);

 GLCD_SetXPage(1,i);
 GLCD_write_data(1,i>3?logo[j+(i-4)*64]:0x00);
 }

 // scroll it
 while(1)
 {
 line++;
 for(i = 0; i < 100; i++) for(j = 0; j < 100; j++);
 GLCD_StartLine(line);
 }
}

AN2147

5/27/2004 Revision A - 7 -

Graphic LCD Screenshot and Set Up

Figure 5. LCD Screenshot

Figure 6. LCD Set Up

About the Author

Name: Pham Minh Tri
Background: Earned B. Eng (Computer

Engineering) with Honors from
Nanyang Technological
University, Singapore in 2003.
A member of CMS worldwide
consultant team.

Contact: pmtri80@yahoo.com

 Cypress MicroSystems, Inc.

2700 162nd Street SW, Building D
Lynnwood, WA 98037
Phone: 800.669.0557

Fax: 425.787.4641
http://www.cypress.com/ / http://www.cypress.com/aboutus/sales_locations.cfm

Copyright 2003-2004 Cypress MicroSystems, Inc. All rights reserved.
PSoC™ (Programmable System-on-Chip™) is a trademark of Cypress MicroSystems, Inc.

All other trademarks or registered trademarks referenced herein are property of the respective corporations.
The information contained herein is subject to change without notice.

