
Version 4.2 SP8
Ref: shel42e_sp8_rev1_20111028

Time Navigator Shell Scripting

Atempo Copyrights

The Time Navigator software documentation is protected by copyright and other intellectual property laws. Any
unauthorized copying or use of the documentation may violate such laws. No part of this documentation may be copied
or transmitted, for any purpose, by any means, electronic or mechanical, without Atempo's express written permission.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING (BUT NOT LIMITED TO) THE IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.

ATEMPO SHALL NOT BE LIABLE FOR LOSS OF PROFITS, DECREASING OR INTERRUPTED BUSINESS
ACTIVITY, FOR LOSS OF DATA OR DATA USE, NOR FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES WHATSOEVER, EVEN IF ATEMPO HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES ARISING OUT OF A FAULT OR AN ERROR IN THE DOCUMENTATION OR IN
Time Navigator SOFTWARE.

Atempo may modify this documentation periodically without notice.

Atempo, the Atempo logo and Time Navigator are trademarks or registered trademarks of Atempo, Inc. or Atempo SAS,
as applicable.

All other marks, brand names or product names are trademarks or registered trademarks of their respective owners.

© 2011 Atempo. All rights reserved.

Atempo Web Support

If you have subscribed a maintenance contract and you encounter a problem with Time Navigator, consult the Atempo
Web Support at:
http://support.atempo.com

If you are unable to solve your problem or find the information you need, Atempo and its partners will help you. Web
support includes an interactive interface through which you can log your inquiries directly and follow them up. Support
is also available by email and by phone.

When calling the Atempo Technical Support team, please provide your maintenance contract number. We also
recommend that for all Support inquiries you generate the Environment Report. For more details on the Environment
Report, see the Troubleshooting chapter of the Time Navigator Administration Guide.

Your Comments are Welcome

We value and appreciate your opinion as a Time Navigator user and reader of our documentation. As we write, revise
and evaluate our guides, your comments are the most important input we receive. Please do not hesitate to send us any
remarks you have to the following address: documentation@atempo.com

Time Navigator Shell Scripting

i

Table of Contents

Introduction
Welcome . 1
The Guide . 1

Overview
Introduction. 3
Application Fields . 4
API Time Navigator . 4

Object Classes . 5
Object Attributes. 6
Object Operations . 6

Functional Modes and Starting Up of tina_shell. 7
Interactive Mode or Shell Mode . 7

The Programming Mode . 8
Quitting tina_shell . 9

tina_shell Language
Variable Types . 11
Existing Variables . 12
General Variable Operations . 12

Specific Variable Operations . 15
Type int Variables. 15
String Type Variables. 16
List type variables . 18

Conditional Branches . 21
Loops . 22
Other Operations . 23

Value Entry. 23
Access to Environment Variables . 24
Access to files . 25
Time Commands. 26

Functions . 27
Short Mode . 28

ii Time Navigator Shell Scripting
Manipulation of Objects
Principles . 29
On-line Help . 30

Attribute Column . 32
Action Column. 32
Type Column. 32

Accessing Catalog Objects. 33
Preparation . 33
Assigning attributes . 33
Creation and removal of objects . 36
Opening and Closing Objects . 37
Reading Attributes. 38
Modifying Attributes . 38
Listing Objects for a Class. 39
Existence test . 40

Example. 42

Objects and their Attributes
Platform related Objects . 44

Host Object . 44
Application Object. 48
HostGroup Object . 53

Device Related Objects. 53
Drive Object . 53
DriveConnection Object . 58
Network Object . 60
Library Object . 61
LibraryLocation object . 64
AccessGroup Object of Library type. 65

Cartridge Pool Related Objects . 66
AccessGroup Object of Cartridge Pool Type. 66
User Object of Cartridge Pool Type . 68

User Related Objects . 69
AccessGroup Object of User Type . 69
User Object of User Type . 71

Data Related Objects . 72
Catalog Object . 72
Cartridge Object . 75
Job Object. 80
Alarm Object . 85

Backup Related Objects . 86
Strategy Object. 86

Table of Contents iii
Backup ClassObject . 91
Backup Object . 94
 . 95
Schedule Object . 96
Scheduler Object. 97
ScheduleRule Object . 99
Snapshot Object . 109

Archive Related Objects . 111
Folder Object. 111
Archive Object . 116
DFM Archive Object . 118

Appendix
Extension of Script Files . 119
Variables . 119
Getting and Displaying Host Names . 126
Enabling Hosts, Applications and Drivers 127
Launching a Backup . 128
Getting a Job List and its Characteristics . 130
Getting Catalog Information . 131
Getting a Cartridge List via a Cartridge Pool 134
Retrieving DumpCartridgeInformation . 138

iv Time Navigator Shell Scripting

Introduction 1
Introduction

Welcome

Thank you for choosing Time Navigator, superior software developed by Atempo. The
prime automated solution for backing up, archiving and restoring data. Its flexible and
dynamic architecture brings both performance and security to your data storage need.

Time Navigator Shell Scripting is a command interpreter that allows the administrator
to configure Time Navigator.

The Guide

The guide is organized as follows:

■ Chapter 1 gives a short description of Time Navigator Shell Scripting: the application
fields and the function modes, such as the fundamental principles of the API
Time Navigator.

■ Chapter 2 describes the syntax of the language tina_shell.

■ Chapter 3 presents the manipulation methods of the objects using their attributes and
also using the on-line help.

■ Chapter 4 describes all the objects and their different attributes. It also describes the
links between the objects.

The Appendix gives the conventions in order to homogenize scripts. It also
gives examples of tina_shell scripts and provides the list of tina_shell
commands.

2 Time Navigator Shell Scripting

3

C H A P T E R 1

Overview

This chapter presents Time Navigator Shell Scripting by giving a short
description of the Time Navigator API (Application Programming Interface),
and by providing a few examples.

Introduction

Time Navigator Shell Scripting is composed of a command shell using a
programming interface of the Time Navigator API, and its related
documentation.

The command shell is used in command line, tina_shell being the name of
the binary. The tina_shell command allows users to administer a
Time Navigator configuration by developing procedures in simple language.
This enables interaction with the product administration database, the catalog.

It contains a number of commands which are intentionally restricted, allowing the
handling of shell variables, together with Time Navigator objects.

A good knowledge of Time Navigator, and its administration interface
tina_adm is required to use tina_shell.

☞ For more information, refer to the Time Navigator Administration Guide and
Time Navigator Restore Guide.

Time Navigator Shell Scripting is a Time Navigator option of which the
tina_shell binary is installed under the same name as the other executables.
It is found in the tina/Bin directory.

1

4 Time Navigator Shell Scripting
Application Fields

Time Navigator Shell Scripting can be used in the following contexts (the list is non-
exhaustive):

■ Automated deployment of the Time Navigator configuration on one or more sites
having one or more backup servers. This deployment rests on the use of " masters " of
installation and configuration.

■ Advanced interfacing with Time Navigator and a follow-up management tool of
exploitation.

■ Advanced interfacing with a software scheduler.

■ Automation of regular tasks: preventive recycling, etc.

■ Collection of information to create personalized reports and for statistical analysis.

Warning An application of Time Navigator Shell Scripting is considered a client of the
Time Navigator server. Only the "client" functionalities are available. For se-
curity reasons, the management of user profiles and changing the password of
the user tina is impossible.

Warning The availability of a new scheduler object in the API will require recompi-
lation of scripts.

API Time Navigator

The API Time Navigator is a programming interface composed of a library of
functions written in C. It offers a great number of disposable functionalities via
Administration Console and Restore & Archive Manager. This is object
oriented programming where the information and functions of
Time Navigator are structured in class objects.

To use Time Navigator Shell Scripting, it is preferable to be familiar with
certain concepts of the API, class objects and their attributes.

Chapter 1 Overview 5
Object Classes

Time Navigator API uses the concepts of classes and attributes.

Sixteen object classes are available to users.

Classes correspond to objects that users can handle in tina_adm,
for example the objects Host, Drive, ...

Here are the classes listed alphabetically:

■ AccessGroup

■ Alarm

■ Application

■ Archive

■ Backup

■ BackupClass

■ Cartridge

■ Catalog

■ Drive

■ Folder

■ Host

■ HostGroup

■ Job

■ Library

■ Strategy

■ User

6 Time Navigator Shell Scripting
Object Attributes

Each class is characterized by a certain number of attributes.

The value of each attribute can either be read (get) or modified (set).

For example, three out of twenty-eight attributes of the class Host are:

■ HostName : its name.

■ HostType : its type (HP, SGI, etc.).

■ HostEnable :: its status (enabled/disabled).

☞ For more information about object attributes, refer to “Objects and their Attributes”,
page 43.

Object Operations

Classes can be instantiated and handled by means of the six following
operations:

■ create: creates an object in the Time Navigator catalog.

■ open: opens an existing object in the Time Navigator catalog.

■ get: gets the value of one or several attributes.

■ set: modifies the value of one or several attributes.

■ close: closes an object previously opened by open or created with create.

■ delete: deletes an object existing in the Time Navigator catalog.

☞ For more information about object manipulation, refer to “Manipulation of Objects”,
page 29.

Chapter 1 Overview 7
Functional Modes and Starting Up of tina_shell

Interactive Mode or Shell Mode

In the interactive mode, the commands are immediately interpreted and executed by
tina_shell.

Launch the shell mode by using the following command:
tina_shell [-catalog catalog] [-language language] [-version] [-
help]

The parameters are:

■ -catalog catalog specifies the server catalog if more than one catalog is available.

■ -language Chinese|English|French|Korean|Spanish defines the language.

■ -version is the installed version of the product.

■ -help displays on-line help.

8 Time Navigator Shell Scripting
The Programming Mode
In the programming mode, tina_shell executes a group of commands initially defined
in a file (script).

Launch the shell mode by using the following command:
tina_shell -file file [-catalog catalog] [-language language]
[-version] [-help]

The parameters are:

■ -file specifies the path of the command file. The path can be either absolute or
relative. The absolute path is OS dependent. For example:

■ Relative path is -file Test.tsh

■ Windows absolute path is -file c:\Test.tsh

■ Unix absolute path is -file /tmp/Test.tsh

■ -catalog catalog specifies the server catalog if more than one catalog is available.

You can add arguments to perform specific processes that are read by the command file.

Note It is recommended that you document scripts. The character # placed at the be-
ginning of a line allows comments to be included.

☞ Refer to “Examples of tina_shell Scripts”, page 126 for examples of scripts.

To avoid confusion between parameters used in tina_shell and those for
scripts you must:

■ Enter the parameters just behind the tina_shell command.
For example :
tina_shell param1 param2 -file fic.tsh -catalog cata

or

■ Enter the parameters anywhere so long as they are behind one or more specific options:
For example :
tina_shell -file fic.tsh -myoption param1 param2 param3 -catalog
cata

Chapter 1 Overview 9
Quitting tina_shell
There are two ways to quit tina_shell:

■ The quit command, which is interactive and asks for a confirmation.
It can only be used in shell mode and always outputs a 0 status.

■ The exit command, which takes an integer or an integer variable as an argument
which is an error code used as output status.
The command is useful in script mode.

10 Time Navigator Shell Scripting

11
C H A P T E R 2

tina_shell Language

This chapter explains how variables, objects, conditional branches and loops
are managed in tina_shell.

tina_shell Variables

Variable Types

tina_shell manages the following six variables types:

■ int : integer variable between (-232
 /2) and (+(232/2)-1) which is equivalent to -

2,147,483,648 to + 2,147,483,647

■ string : string of characters

■ intlist : integer list

■ stringlist : list of strings of characters

■ handle : link to a Time Navigator object (see the section Time Navigator
Objects)

■ handlelist : list of links to a Time Navigator object

Variable Naming Conventions

In all our examples, variable types are explicitly provided in the variable names as
follows:

■ int :INT_MY_VARIABLE

■ string :STR_MY_VARIABLE

■ intlist :INT_LIST_MY_VARIABLE

■ stringlist :STR_LIST_MY_VARIABLE

2

12 Time Navigator Shell Scripting
■ handle :HDL_MY_VARIABLE

■ handlelist :HDL_LIST_MY_VARIABLE

Existing Variables

Several variables are created when tina_shell is launched:

■ ARGV : stringlist (5 strings) complete chain of command.

ARGV[0 is the binary name, usually tina_shell (this name can be different if there
is a symbolic link or if the binary one was renamed).

ARGV[1 is the first argument of the command.

■ EMPTY_STRING : empty string (string).

■ NULL STRING string filled with zeroes

■ EMPTY_STRING_LIST forces a string attribute on an empty list.

■ EMPTY_HANDLE_LIST forces a handle attribute on an empty list.

■ EMPTY_INT_LIST forces an integerstring attribute on an empty list.

■ TRUE : (int) = 1

■ FALSE : (int) = 0

■ INVALID_HANDLE = unknown handle

■ NULL_HANDLE = unknown handle

General Variable Operations

Creating Variables

You can create variables using the following command :

variable type_name value

Where type is the variable type to be created (int, stringlist ...), name is the name
of the variable to be created, and value is a value to be attributed to this variable.

The line: tina_shell > variable INT_NUMBER 3
creates a variable of integer type called INT_NUMBER with a value of 3.

tina_shell > variable stringlist STR_LIST_WORDS sea sand sun

Chapter 2 tina_shell Language 13
creates a variable called STR_LIST_WORDS, which is a list of strings of characters into
which the three strings are stored in order.

To create variables which are not lists, the last argument of this command can also be a
type variable compatible with the declared type.

Example tina_shell > variable int INT_A 3
tina_shell > variable int INT_B INT_A
tina_shell > echo INT_B
3
tina_shell

In this example, the value of Variable INT_A is 3. You then create a variable INT_B of
the int type whose value is INT_A, in other words 3.

Note If you want to assign a value that is a standard string, but that the string is
also a variable name, insert this string between quotation marks so that it
will not be interpreted as a variable.

Warning The variables of the handle type are created when objects are opened. The
variable command handle HANDLENULL null allows only the creation of a
handle Null.

Deleting Variables

You can remove one or more variables with the following command:

erase variable1 variable2

■ tina_shell > erase INT_NUMBER STR_LIST_WORDS

Removes the variables INT_NUMBER and STR_LIST_WORDS.

Viewing All the Variables

View the variables by using the following command:

show

This command displays all the existing variables at any given moment; for example, the
default variables and the created variables. It displays two parts: the variable part (on the
left), and the attribute part (on the right).

14 Time Navigator Shell Scripting
Example

With this example, two variables were created:
- INT_NUMBER of type int whose value is 6, and
- STR_LIST of type stringlist containing 3 elements.

Three attributes were directed:
- HostName whose value is recovered in the variable STR_NAME,
- HostType whose value is recovered in the variable INT_TYPE, and
- HostEnable whose value is recovered in the variable INT_STATUS.

Displaying the Variable Values

You can display the value of the variables using the following command:

echo variable1 variable2

Used without arguments, this command jumps a line. In this case, the command echo
simply displays the arguments, unless an argument is a variable name. In this case, the
value of the variable is displayed instead of its name.

Example To display the variable value INT_NUMBER:
tina_shell > echo INT_NUMBER
3
tina_shell >

Note If you want to display a character string which is also a name of variable, insert
it between quotation marks ("). In addition, if you want to display a double
quote, insert a backslash before the double quote.

Chapter 2 tina_shell Language 15
Specific Variable Operations
Type int Variables

Increment and Decrement

To increment or decrement variables, use the following commands:

increment name value_increment

decrement name value_decrement

Where name is the name of the integer type onto which the operation is performed.

Where value_increment and value_decrement set the increment or decrement
values. This can be specified by a raw integer value or by an integer variable of type int.

In the following example, the two cases are encountered:

Example tina_shell > variable int INT_A 2
tina_shell > variable int INT_B 1
tina_shell > increment INT_A 3
tina_shell > echo INT_A
5
tina_shell > increment INT_A INT_B
6
tina_shell > decrement INT_A 3
tina_shell > echo INT_A
3
tina_shell > decrement INT_A INT_B
tina_shell > echo INT_A
2
tina_shell >

Multiply

The multiply command works with integer variables.

multiply variable1 variable2 name

Where variable1 and variable2 are two variables of type int containing the values
to be multiplied.

Where name is the name of the variable created to contain the result.

tina_shell > variable int INT_A 2
tina_shell > variable int INT_B 3
tina_shell > multiply INT_A INT_B INT_RESULT
tina_shell > echo INT_RESULT
6

16 Time Navigator Shell Scripting
Percent

The percent command works like the multiply command, except that it calculates a
percentage.

Example tina_shell > variable int INT_A 3
tina_shell > variable int INT_B 4
tina_shell > percent INT_A INT_B INT_PERCENT
tina_shell > echo INT_A / INT_B = INT_PERCENT %
tina_shell > echo INT_PERCENT
75
tina_shell >

String Type Variables

Concatenation

The concatenation of 2 variables of type string is carried out with the following
command:

concat STR_A STR_B

STR_A is the variable name of string type to be concatenated. If the variable does not
exist, STR_A is litterally taken as the source. If the variable exists and is of the string
type, the variable value is the same as the source.

STR_B is the variable name of string type,target of the concatenation. If the variable
does not exist, it is created with the value of STR_A. If the variable exists, the value of
STR_A is concatenated with it.

Example tina_shell > variable string STR_A1 /Bin
tina_shell > variable string STR_A2 /tina
tina_shell > variable string STR_A3 /usr
tina_shell > concat STR_A1 STR_A2
tina_shell > echo STR_A2
/tina/Bin
tina_shell > concat STR_A2 STR_A3
tina_shell > echo STR_A3
/usr/tina/Bin
tina_shell >

Chapter 2 tina_shell Language 17
Conversions

tina_shell allows the conversion of a string to an integer and vice versa.

Example tina_shell > variable string STR_STR1 5
tina_shell > variable int INT_A STR_STR1
tina_shell > increment INT_A 1
tina_shell > variable string STR_STR2 INT_A
tina_shell > echo STR_STR1 INT_A STR_STR2
5 6 6
tina_shell >

Conversion of an integer into a character string: there are no requirements.

Conversion a character string into an integer: the character string representing a
number must not contain any punctuation or spaces. For example, write 100000 and not
100,000 or 100 000.

Note If you specify a string as "1 000", the result is interpreted as "1". If you specify
"x1000", where "x" is an empty space, the result is "0", without an error
message.

18 Time Navigator Shell Scripting
List type variables

All list type variables (intlist, stringlist, handlelist) are tables.

The first element of a tina_shell table (or list) is the element number 0.

Access to Table Elements

A list element can be accessed using the character ‘[‘.

Example tina_shell > variable stringlist STR_LIST sea sand sun
tina_shell > echo INT_LIST
sea sand sun
tina_shell > echo INT_LIST[0
sea
tina_shell >

Counting Table Elements

The item command displays the number of elements in a table:

item variable number

Where variable is a variable of type stringlist containing a table where you want
to count the number of elements.

Where number is a variable of type int which is created to contain the result of the
count.

Example tina_shell > variable stringlist STR_LIST sea sand sun
tina_shell > item STR_LIST INT_NUMBER
tina_shell > echo INT_NUMBER
3
tina_shell >

Adding an Element to a Table

You can add an element to the end of a list using the add command.

add variable in name

Where variable corresponds to the value to be added.

Where name is the the list into which the value of the value is added.

Chapter 2 tina_shell Language 19
The variable types must be consistent.

If the variable name does not exist, it is created according to the type of variable to be
added.

Example tina_shell > variable string STR_STR1 sea
tina_shell > variable string STR_STR2 sun
tina_shell > add STR_STR1 in STR_LIST
tina_shell > add STR_STR2 in STR_LIST
tina_shell > echo STR_LIST
sea sun

Binary/Decimal Conversion

The two commands mask and unmask operate on tables of integers.

They allow you to easily handle attributes whose value is a bit mask.

mask variable1 variable2

The mask command generates a bit mask from all the integers present in a list.The first
argument of this command is an integer list, the second one being a variable name which
will be created of integer type that contains the mask value.

unmask variable1 variable2

Conversely, the unmask command generates an integer list from an integer representing
a bit mask.

The first argument of this command is an integer representing a mask, the second is a
variable name which is created of integer list type that contains the mask components.

Example The attribute StrategyIncrPhaseTime corresponds to the starting time of the

20 Time Navigator Shell Scripting
incremental backup. This attribute can take the following attributes:

The mask command makes it possible to code into a single value any combination of hours,
creating a checkmark in the Edition window of the Backup Strategy of Administration
Console. This coding is equivalent to an addition of the various values corresponding to the
time phases.
To launch the incremental backup at 6:00., 14:00. and 19:00.

tina_shell > variable intlist INT_LIST 64 16384 524288
tina_shell > mask LIST INT_MASK
tina_shell > echo INT_MASK
540736

Conversely, the unmask command decodes a value to provide the list of all the time
phases. If the time phases notched in Administration Console correspond to value 540736,
it is necessary to decode this value so that the time phases are transparent.
tina_shell > unmask MASK1 INT_LIST2
tina_shell > echo INT_LIST2
64 16384 524288

These values correspond to the hour phases 06, 14 et 19.

Chapter 2 tina_shell Language 21
Conditional Branches

Four commands are used to perform tests with the conditional execution of some script
branches.

if and endif Commands

The if command starts a test branch which must end by using the endif command.

The if command only tests variables of non-list type and compares them with other
variables of the same type or with raw values.

if INT_A == 2
...
endif

if INT_A == INT_B
...
endif

if STR_NAME == speedy
...
endif

elif and else Commands
elif

else

These commands are optional and complete the last two commands.

if INT_A == 1
...
elif INT_A == 2
...
elif INT_A == 3
...
else
...
endif

Comparison Operations

The supported comparison operators are:

== Equal

!= Unequal

>= Greater than or equal

22 Time Navigator Shell Scripting
<= Less than or equal

> Greater than

< Less than

You can nest as many comparison levels as required.

Note You cannot do a comparison between two Handles, except for an equal
comparison between two NullHandles.

Loops

tina_shell loops are managed by the following commands:

foreach name variable_list

endfor

These commands allow a variable to browse all the elements of a list type
variable.

For example, if you want to browse all the strings of characters of the list ARGV created
when tina_shell was started and containing all the parameters of the command line,
you write:

Example tina_shell > variable stringlist STR_LIST_WORDS sea sand sun
tina_shell > foreach STR_ELEM in STR_LIST_WORDS
tina_shell > echo STR_ELEM
tina_shell > endfor
sea
sand
sun
tina_shell >

You can nest as many loop levels as required.

Chapter 2 tina_shell Language 23
Other Operations

Value Entry

A dialogue can be established between the user and tina_shell, using the command:

input variable

Where variable corresponds to the variable which is created. The variable must be a
string type.

This command allows you to interact with the program by entering a string which is
placed in the named variable.

If the type of variable required is an integer, conversion is achieved by using the
variable command.

For more information about conversions of string variables, refer to “Conversions”,
page 17.

Example tina_shell >echo enter your user name:
tina_shell >input STR_NAME
? MyName
tina_shell >echo HELLO STR_NAME
hello MyName
tina_shell >

In this example, you enter your name which is recovered in the variable STR_NAME,
and reused to display a greeting.

24 Time Navigator Shell Scripting
Access to Environment Variables

envget Command

envget variable1 variable2

This command retrieves the value of the environment variable specified in variable1,
and places the value in variable2 to be created as a string type. You can get this
value directly or by using another variable.

Example tina_shell > envget TINA_HOME STR_PATH
tina_shell > echo STR_PATH
/usr/tina
tina_shell >

Example tina_shell > variable string STR_ENV_NAME TINA_HOME
tina_shell > envget STR_ENV_NAME STR_PATH
tina_shell > echo STR_PATH
/usr/tina
tina_shell >

envput Command

envput variable1 variable2

This command places the value contained in variable2 in the environment variable
named in variable1.

Example tina_shell > variable string STR_ENV_NAME TINA_HOME
tina_shell > variable string STR_ENV_NAMEVAR_VALUE /tina
tina_shell > envput STR_VAR_NAME STR_VAR_VALUE
-or-
tina_shell > envput TINA_HOME /tina

Chapter 2 tina_shell Language 25
Access to files

fileget Command

fileget file_path name [first_line number_of_lines]

This command retrieves the content of a text file in a stringlist type variable. The
argument file_path corresponds to the file path from where you want to get the
content. The variable name is created from this.

By default, the entire content of the file is retrieved, but it is possible to retrieve only a
part of the file by using [first_line number_of_lines].
These lines are numbered from zero. For example, to retrieve 3 lines starting at the third
line, enter [2 3]. This retrieves lines 3, 4 and 5.

Example tina_shell > fileget /usr/tina/Conf/catalogs LIST
tina_shell > foreach STRING in LIST
tina_shell > echo STRING
tina_shell > endfor
catalogs :
name = demo,
server = "speedy",
console = "speedy:0",
comment = "catalog of demonstration"
tina_shell >

fileput Command

fileput file_path name [first_line number_of_lines]

This command creates a text file containing the elements of a stringlist type variable.
The argument file_path corresponds to the file path that one wants to create. The
variable name is of the stringlist type and contains the list of values to be integrated into
the file.

By default, the entire content of the variable is retrieved. It is possible to retrieve only
part of the variable by using [first_line number_of_lines]. The lines are
numbered from zero. For example, to retrieve 3 lines starting at the third line, enter [2
3]. This retrieves lines 3, 4 and 5.

26 Time Navigator Shell Scripting
Example tina_shell > variable stringlist STR_LIST_PARAMS
parameter:language=English binary:tina_adm catalog:*
parameter:host_icon_size=14
tina_shell > fileput /usr/tina/Conf/parameters STR_LIST_PARAMS
tina_shell > exit 0

The parameters now contains the following text:
parameter:language=English
binary:tina_adm catalog:* parameter:host_icon_size=14

Time Commands

date command

date variable name

This command converts the number of seconds since January 1, 1970, contained in
variable, to a date in the form of a meaningful string and written into the variable
name. This command is very useful because the value of the number attribute is in
number of seconds.

Example tina_shell > time INT_TIME
tina_shell > date INT_TIME STR_DATE
tina_shell > echo STR_DATE
lun 19 fev 09:57 :56 2001
tina_shell >

time Command

time name

This command places into an integer variable the number of seconds since January 1,
1970.

Example tina_shell > time INT_TIME
tina_shell > echo INT_TIME
982596030
tina_shell >

Chapter 2 tina_shell Language 27
wait Command

wait number_seconds|variable

This command stops the program during a number of specified seconds
(number_seconds), either directly, or through the use of a variable (variable). This
allows, for example, solving problems of real time.

Example tina_shell > wait 5
tina_shell > variable int INT_TEMPO 10
tina_shell > wait INT_TEMPO
tina_shell >

Functions

It is possible to write the functions that allow the use of factorized script code. Access to
these functions is by three commands:

function_begin

The command function_begin name parameters begins function declaration. There
must be at least one parameter.

Note The defined arguments of this command are purged after the execution of the
function.

function_end

The command function_end ends the function declaration.

function_execute

The command function_execute name parameters executes the function. The
parameters specified when calling this function are replaced by the parameters defined in
the function declaration.

Note You can use variables that were not exclusively created for this function.
You can also create variables in a function and use them again, after the
execution of this function.

28 Time Navigator Shell Scripting
Short Mode
For a faster use in interactive mode, tina_shell interprets shortened commands (ex :
as instead of assign).

A shortened command is interpreted because there is no ambiguity.
For example, the command de cannot be used because it could be interpreted as the
command decrement or the command delete.

Warning We do not recommend using the short mode in a script, because the appear-
ance of new commands could generate incompatibilities.

29
C H A P T E R 3

Manipulation of Objects

Principles

You can act on many object classes of Time Navigator. The majority of these
objects are visible in Administration Console. They are contained in the
tina_shell variables, of the type handle. These variables make it possible
to handle the Time Navigator objects in tina_shell.

tina_shell allows users to handle Time Navigator objects using the six following
operations:

■ Creation : create

■ Opening : open .

■ Recovering information : get

■ Modifying information : set

■ Close : close

■ Deletion : delete

A view of the catalog contents in the Time Navigator server can be seen in tina_adm, as
well as in tina_shell.

The catalog can be seen by two different interfaces. The modes are:

■ Graphic mode

■ Text mode (which can be programmed)

However, each handling in one of the interfaces ends its equivalent in the other, except
for the open and close commands which are implicit in tina_adm. Once started,
tina_adm automatically creates an image for each object of the catalog and deletes them
all when you quit the application. Whereas in tina_shell, you must explicitly specify
the objects whose images you want to keep and those whose images you want to delete.

3

30 Time Navigator Shell Scripting
On-line Help

help

This command allows access to on-line help.

■ Used without arguments, it provides a list of all the commands, followed by a short
description of the syntax, which also contains all the available object classes.

■ Used with class object names, it provides specific help on the class which is listed in
descending order in a table of the properties of the attributes related to the class.

■ Used with an attribute name like an argument, it provides help specific to the attribute
(displays a general list of possible values for the attribute).

Chapter 3 Manipulation of Objects 31
Example: On-line help obtained by the command help Host
tina_shell > help Host

 Attributes Actions Type

 ---------- ------- ----

 HostName OPEN CREATE set get (string)

 HostType -- CREATE set get (int)

 HostEnable -- create set get (int)

 HostReportUnavailability -- create set get (int)

 HostServer -- -- -- get (int)

 HostDiskSpace -- create set get (int)

 HostKey -- -- set get (string)

 HostDrive -- -- -- get (handle list)

 HostLibrary -- -- -- get (handle list)

 HostRobot -- -- -- get (handle list)

 HostHostGroup -- -- set get (handle)

 HostAlarm -- -- -- get (handle list)

 HostBackupMaster -- create set get (handle)

 HostBackupMastered -- -- -- get (handle list)

 HostGraphicalMaster -- create set get (int)

 HostProtocolType -- create set get (int)

 HostProtocolTinaVersionMaj -- create set get (int)

 HostProtocolTinaVersionMin -- create set get (int)

 HostProtocolTinaVersionIndice -- create set get (int)

 HostProtocolNdmpVersionMaj -- create set get (int)

 HostProtocolNdmpVersionMin -- create set get (int)

 HostProtocolNdmpVersion -- create set get (int)

 HostProtocolNdmpUser -- create set get (string)

 HostProtocolNdmpPassword -- create set -- (string)

 HostProtocolSymapiVersionMaj -- create set get (int)

 HostProtocolSymapiVersionMin -- create set get (int)

 HostSoftwareVersion -- -- -- get (string)

 HostStorageNode -- create set get (int)

tina_shell >

32 Time Navigator Shell Scripting
Attribute Column

This column lists all the corresponding attributes for each class of objects.

☞ For more information regarding different attributes, “Objects and their Attributes”,
page 43.

Action Column

The four columns gathered under the Action heading reveal information on the actions
(or operations).

Each column relates to an operation: open, create, set, or get. The operations
closed and delete do not require attributes.

■ If the name of the operation located opposite an attribute is in uppercase letters, this
attribute is MANDATORY to carry out this operation.

■ If the name of the operation located opposite an attribute is in lowercase letters, this
attribute is defined, but it is OPTIONAL to carry out this operation.

■ If no operation name appears opposite an attribute, this attribute is not DEFINED for
this operation.

For example, for the creation operation, the HostName attributes and the HostType are
mandatory. The HostEnable attribute is not mandatory but can be specified because it
is defined, and the HostDrive attribute is prohibited because it is not defined.

The attributes of all the classes function in a similar way.

Type Column

This column specifies the variable type. There are 6 types:

int : integer variable
string : string of characters
handle : points to a Time Navigator object
intlist : table of integers
stringlist : table of character strings
handlelist : table of handles

Chapter 3 Manipulation of Objects 33
Accessing Catalog Objects

Preparation

Handles by Access Type

With tina_shell, you must explicitly specify the object handles that you want and those
that you want to erase.

Certain operations require at least an attribute and/or a handle (the image tina_shell
of the object of the catalog), while others generate a variable of the handle type.

The list below summarizes the situation for each of the six operations:

Assigning attributes

The attributes can either be used, or modified at the time of the request to the
tina_shell commands . For the four operations requiring one or more attributes (first
column), you must assign a value to each attribute. The access to these attributes is done
by read/write in a table of attributes which must be prepared in advance.

This preparation is carried out by means of the command assign.

Assign attributes for the create, open and set Commands

Requires
attribute (s)

Requires
a handle

Generates
a handle

create * *

open * *

set * *

get * *

delete *

close *

34 Time Navigator Shell Scripting
assign attribute value

Where attribute corresponds to the name of the concerned attribute.

Where value represents the value of the attribute that you want to assign.

The name and the purpose of the attributes to be specified depend on the class and the
object created.

For example, before host creation, you must specify the name and the type.
tina_shell > assign HostName speedy
tina_shell > assign HostType 12

Entering these commands is the same as filling in the Type and Host Name fields in the
Host Creation window of Administration Console.

☞ For more information about attributes related to different object classes, refer to
“Objects and their Attributes”, page 43.

Assign attributes for the get Command

assign attribute &name

Where attribute corresponds to the name of the attribute.

Where name is the name of the variable from which you get the value.

The name must be preceeded by the character "&" to indicate that you want to get the
value.

Example assign HostName &STR_NAME
assign HostType &INT_TYPE
assign HostEnable &INT_ENABLE

In the example above, you retrieve the values of the STR_NAME, INT_TYPE, and
INT_ENABLE variables that correspond to the host name, the type and its current status
(enabled/disabled), respectively.

Chapter 3 Manipulation of Objects 35
The attribute table is reset to zero after each call of a command, but it can be directly
removed with the following command:

reset

Note The results of the attribute table for the command assign can be viewed with
command show (right column).

Assign attributes for the list Command

assign attribute value

Where attribute corresponds to the name of the concerned attribute.

Where value represents the value of the attribute that you want to assign.

Assigning an attribute to the list command is optional. This command only displays the
objects corresponding to the assigned attributes.

Example assign JobListAge 86400
assign JobListActivity 2

In the above example, along with the list command, you can view only the historic jobs
which occurred in the last 24 hours.

☞ Refer to section “list Command”, page 39 for a detailed description of the list
command.

36 Time Navigator Shell Scripting
Creation and removal of objects

Create Command

After you have assigned a value to the attributes, you must create an object to which they
apply. This is the function of the command create :

create class variable

The create command creates an object of the class class by using the information of
the assigned attributes. The variable parameter is the name of a variable of type
handle which is created and which is used as a link between the user and the object
created for further operations. This command resets the attributes.

Example Creation of a Host
tina_shell > assign HostName speedy
tina_shell > assign HostType 12
tina_shell > create Host HDL_SPEEDY
tina_shell >

The create command makes the creation of the object effective. This is the same as
clicking on OK in the Host Creation window of Administration Console. The SPEEDY
variable can then be used for each of the four operations requiring a handle.

Delete Command

delete variable

The delete command takes a variable of the handle type like an argument and deletes the
corresponding object in the catalog, and its image in tina_shell.

Warning This operation cannot be undone.

Example Deletion of the host Speedy
tina_shell > delete HDL_SPEEDY
tina_shell >

Chapter 3 Manipulation of Objects 37
Opening and Closing Objects

Open Command

open class variable

Opens an object of the class class by using the information of the assigned attributes.
variable is the name of a variable of type handle which is created and which is used
as a link between the user and the object opened in tina_shell.

For example, the on-line help of the Host class shows that only one attribute is necessary
to open a host: the HostName attribute. The opening of a system is therefore carried out
in two lines:

Example tina_shell > assign HostName popeye
tina_shell > open Host HDL_POPEYE
tina_shell >
popeye is the object name in the catalog. HDL_POPEYE is the variable name of the type
handle that is created, pointing to the catalog object.

Note This operation has no effect on the catalog.

Close command

close variable

The object disappears from tina_shell at the same time as the variable variable.
There is no effect on the catalog.

Example tina_shell > close HDL_POPEYE
tina_shell >

Erase Command

erase variable

Allows users, in a single command, to delete variables as well as attribute assignments.
The erase command removes a variable of the type handle, but does not erase the object
image from tina_shell. If two variables of handle type point to the same object,
closing one of them makes the second one invalid and the latter must no longer be used,
except for the erase command.

38 Time Navigator Shell Scripting
Reading Attributes

Get Command

get variable

The get command retrieves attribute information. The assigned attributes do
not have to specify a value. The information can be a variable name that is
the container for the retrieved value.

The variable must be of the type handle and with the correct attributes of the
corresponding class. These variables are created with the corresponding attribute type.

Behind an attribute, you must define a destination (in the form of a variable) to receive
the information. The destination is preceeded by an ampersand "&".

Example tina_shell > assign HostEnable &INT_HOSTENABLE
tina_shell > assign HostType &INT_HOSTTYPE
tina_shell > get HDL_POPEYE
tina_shell > echo INT_HOSTENABLE INT_HOSTTYPE
1 32
tina_shell >

Modifying Attributes

Set Command

set variable

The set command modifies the attribute information. It is equivalent to
editing, and requires the assignment of at least one attribute (authorized for
this command) taking a type handle variable as an argument, which is the
image of the object that you want to modify.

Example tina_shell > assign HostEnable 1
tina_shell > set HDL_POPEYE
tina_shell >

In this example, the host moves from a disabled status to an enabled status.

Note For boolean parameters, you can assign true or false to the variables.

Chapter 3 Manipulation of Objects 39
The number and purpose of attributes to be specified depend on the class of the object
that is opened.

Listing Objects for a Class

list Command

list class in variable

The list object function generates a list of handles of all objects of class class known to
the catalog. variable is the name of the handlelist type variable that is created.
The following classes are supported:

Example tina_shell > list Host in HDL_LIST_HOST
tina_shell > echo HDL_LIST_HOST
(2 Host(s) handle list)
tina_shell >

You assign attributes to the list command to view objects corresponding to certain
criteria.

☞ See the section “Assign attributes for the list Command”, page 35 for details.

The following attributes are supported:

■ AccessGroup

■ Alarm

■ Application

■ BackupClass

■ Cartridge

■ Drive

■ Folder

■ Host

■ Job

■ Library

■ Network

■ User

40 Time Navigator Shell Scripting
Job

■ JobListActivity Lists jobs according to the specified activity.
1 Lists active jobs.
2 Lists historic jobs.
3 Lists active and historic jobs.

■ JobListAge Lists jobs that have been run during the specified
number of seconds.

Alarm

■ AlarmListSeverityList Lists alarms according to the specified severities.
1 Lists minor alarms.
2 Lists major alarms.
3 Lists critical alarms.

Existence test

exist Command1

exist class variable

Where class corresponds to the assigned attributes.

Where variable is the name of an int type variable created to contain the result of
the command, true (1) if the object exists and false (0) if it does not exist.

The existence test function (exist command) tells you whether an object exists in the
catalog, using information on assigned attributes.

Hereafter is a list of the supported objects. To test these objects, use the attributes written
between brackets.

■ AccessGroup (AccessGroupName)

■ Alarm (AlarmId)

■ Application (ApplicationName)

■ Archive (ArchiveName, ArchiveFolder)

■ BackupClass (BackUpClassPath, BackupClassHostGroup)

■ Cartridge (CartrigeName)

Chapter 3 Manipulation of Objects 41
■ Drive (DriveName DriveHost)

■ DriveConnection (DriveConnectionHost, DriveConnectionDevice)

■ Folder (FolderName)

■ Host (HostName)

■ Job (JobId)

■ Library (LibraryName, LibraryHost)

■ Network (NetworkName)

■ Schedule (ScheduleName or ScheduleNameUtf8)

■ ScheduleRule (ScheduleRuleId)

■ Strategy (StrategyName, StrategyHostGroup)

■ User (UserName)

Warning After you use the Existence test, the attribute used for the test is not reset to
zero. As a result, opening after the test an attribute whose type is different
from that of the attribute used for the test will cause an error.
To reset the attribute used for the Existence test to zero, use the reset com-
mand.

Example tina_shell > assign ApplicationName aria.cat
tina_shell > exist Application INT_CAT
tina_shell > echo CAT
1
tina_shell >
This example states that there is an application whose name is aria.cat.

It is also possible to test for the existence of children applications

Example tina_shell > assign ApplicationParent HDL_parent.app
tina_shell > assign ApplicationName Aria.cat
tina_shell > exist Application INT_CAT
tina_shell > echo CAT
1
tina_shell >
This example tests for the existence of an application name.

42 Time Navigator Shell Scripting
It takes into account the ApplicationParent attribute to see if the children
application exists amongst the children of the parent application.

Example

➤ Create a host Dilbert of type SGI and enable it

1. Call the attributes using the assign command.

tina_shell > assign HostName dilbert

tina_shell > assign HostType 12

tina_shell > assign HostEnable TRUE

2. Enter the following command:

tina_shell > create Host HDL_DILBERT

The host Dilbert is created. It appears in Administration Console and is enabled.

The assign command takes on the first argument, an attribute name, and the second
argument, the value of this attribute.

While entering the command help HostType, the user sees that 12 corresponds to the
type SGI. So the value 12 is used as the value of the attribute HostType.

The TRUE value was given as the value of the attribute HostEnable.

The TRUE value was part of the four variables created at the launching of tina_shell,
and its value is 1.

43
C H A P T E R 4

Objects and their Attributes

Principles

The Time Navigator catalog contains object classes that you can manipulate using
tina_shell variables of the type handle. To do this, you must know the attributes which
characterize the corresponding object classes.

Each attribute corresponds to a Time Navigator function in Administration Console.

☞ For more information, refer to the Time Navigator Administration Guide.

All the attributes are not defined for each operation (open, create, get and set). For
each object, on-line help provides an attribute table that gives the possible operations.
This table of attribute properties is mentioned again in this chapter for each object
described.

☞ For more information about the property table, see “On-line Help”, page 30.

The objects have links between them to maintain the Time Navigator functions. This is why
it is necessary to present these objects in a functional order.

☞ To have global view of the relation between objects, refer to “Relations between
objects”, page 123.

4

44 Time Navigator Shell Scripting
Platform related Objects

Host Object

The Host object represents a host on the network that is managed by Time Navigator. A
host belongs to a unique group of platforms. One or more drives (Drive) and/or libraries
(Library) can be attached. They can also be associated to alarms.

Attributes Actions Type
HostAlarm - - - - - - get (handle list)

HostBackupMaster - - create set get (handle)

HostBackupMastered - - - - - - get (handle list)

HostComment create set get (string)

HostCommentUtf8 create set get (string)

HostDiskSpace - - create - - get (int)

HostDrive - - - - - - get (string)

HostEnable - - create set get (int)

HostHostGroup - - - - set get (handle)

HostKey - - - - set get (string)

HostLibrary - - - - - - get (handle list)

HostName open create set get (string)

HostProtocolNdmpPassWord - - create set - - (string)

HostProtocolNdmpUser - - create set get (string)

HostProtocolNdmpVersion - - create set get (int)

HostProtocolNdmpVersionMaj - - create set get (int)

HostProtocolNdmpVersionMin - - create set get (int)

HostProtocolTinaVersionIndice - - create set get (int)

HostProtocolTinaVersionMaj - - create set get (int)

HostProtocolTinaVersionMin - - create set get (int)

HostProtocolType - - create set get (int)

HostReportUnavailability - - create set get (int)

HostSecuredAgent - - create set get (int)

HostServer - - - - - - get (int)

HostSoftwareVersion - - - - - - get (string)

HostStorageNode - - create set get (int)

HostType - - create set get (int)

Chapter 4 Objects and their Attributes 45
Attributes

■ HostAlarm List of handles of alarms associated with host. If no alarm is
attached to the host, the list is blank.

■ HostBackupMaster Specifies if the system has a backup master:
-3 No backup master
-4 The backup master is the server.

To determine if there is a backup master, perform the test with a handle containing an
integer (-3 and -4):

assign HostBackupMaster &HBM
get MyHost
variable handle BCKMASTER_NON -3
variable handle BCKMASTER_SERV -4
if HBM == BCKMASTER_NON
if HBM == BCKMASTER_SERV

☞ For more information about the object operations, refer to the previous Chapters
“tina_shell Language”, page 11 and “Manipulation of Objects”, page 29.

■ HostBackupMastered Handle list of hosts with masters.

■ HostComment Comment on host.

■ HostCommentUtf8 Comment on host in UTF-8 format.

■ HostDiskSpace Theoretical capacity of disk (in MB) specified at host
creation. This value has no relationship with actual disk
capacity.

■ HostDrive List of handles of drives associated with host. If no drives
are attached to the host, the list is blank.

■ HostEnable Host enabled/disabled:
0 Host disabled (default)
1 Host enabled

■ HostHostGroup Handles of host group to which the host belongs. If the
attribute is absent on creation of the host, the host is
created within a new host group.

■ HostKey Key of the server system (same as the key requested during
tina_init running).

46 Time Navigator Shell Scripting
■ HostLibrary List of handles of libraries associated with host. If no
library is attached to the host, the list is blank.

■ HostName Name of the host. Corresponds to the result of the
command hostname or uname -n on this host.

■ HostProtocolNdmpPassword NDMP User password
It is true only if HostProtocolType = 2.

■ HostProtocolNdmpUser NDMP User
It is true only if HostProtocolType = 2.

■ HostProtocolNdmpVersion This attribute must no longer be used. It
remains supported to ensure compatibility but
is replaced by the
HostProtocolNdmpVersionMaj and
HostProtocolNdmpVersionMin attributes.

■ HostProtocolNdmpVersionMaj First digit of the NDMP version.
It is true only if HostProtocolType = 2.

■ HostProtocolNdmpVersionMin Second digit of the TiNa protocol version.
It is true only if HostProtocolType = 2.

■ HostProtocolTinaVersionIndice Third digit of the TiNa protocol version.

■ HostProtocolTinaVersionMaj First digit of the TiNa protocol version.

■ HostProtocolTinaVersionMin Second digit of the TiNa protocol version.

■ HostProtocolType Protocol type:

1 TiNa (default)

2 NDMP

You can define several protocols by

combining the values in a mask.

(Ex: 3=1+2 equivalent to NDMP and TiNa).

■ HostReportUnavailability Specifies if an alarm must be logged when the host
cannot be reached:
0 Alarm logged (default)
1 No alarm logged

■ HostSecuredAgent Specifies if an agent is security-compliant or not.

■ HostServer Server or client system:
0 Client system (default)
1 Server system1

Chapter 4 Objects and their Attributes 47
■ HostSoftwareVersion Gets the Time Navigator version installed on the
host. The format is Maj.Min.Indice.Patch.

■ HostStorageNode Specifies if the host is a storage node
0 The host is not a storage node (default).
1 The host is a storage node.

■ HostType Type of host. The type list of systems evolves frequently,
consult the On-line Help by entering help HostType in
the tina_shell window.

☞ For script examples concerning the Host object, refer to “Getting and Displaying Host
Names”, page 126 and “Enabling Hosts, Applications and Drivers”, page 127.

48 Time Navigator Shell Scripting
Application Object

The Application object is an application controlled by Time Navigator. It belongs to a unique group
of platforms (HostGroup) and must always be attached to a host (Host). It can also be associated with
alarms.

Attributes Actions Type
ApplicationAlarm - - - - - - get (handle list)

ApplicationCryptPassword - - create set get (string)

ApplicationEnable - - create set get (int)

ApplicationEngenioRootDir create set get (string)

ApplicationEngenioRootDirUtf8 create set get (string)

ApplicationEnvironment - - create set get (string list)

ApplicationFileList - - create * - - get (string)

ApplicationHost - - create set get (handle)

ApplicationHostGroup - - create set get (handle)

ApplicationName open create set get (string)

ApplicationNdmpMountPath create - - get (string)

ApplicationNdmpMountPath - - create * - - get (string)

ApplicationNdmpOSCryptpassword - - create set get (string)

ApplicationNdmpOsPassword - - create set - - (string)

ApplicationNdmpOsUser - - create set get (string)

ApplicationNdmpPassword create set - - (string)

ApplicationNdmpServer - - create * - - get (string)

ApplicationNdmpUser create set get (string)

ApplicationNetDiskServer - - create - - get (string)

ApplicationOwner - - create * set get (string)

ApplicationOwnerUtf8 - - create * set get (string)

ApplicationOwnerCryptPassword - - create set get (string)

ApplicationOwnerPassword - - create * set - - (string)

ApplicationOwnerPasswordUtf8 - - create * set - - (string)

ApplicationParentApp - - create - - get (handle)

ApplicationPassword - - create * set - - (string)

ApplicationPasswordUtf8 - - create * set - - (string)

ApplicationReplicaDestApp - - - - - - get (handle list)

ApplicationSnapHost create set get (handle)

ApplicationSnapNdmpFiler create set get (string)

ApplicationSnapNdmpTmpDir - - create set get (string)

ApplicationSnapPassword create set get (string)

ApplicationSnapShot create set get (string)

ApplicationSnapType create set get (string)

ApplicationSnapTypeEngenio create set get (int)

ApplicationSnapUser create set get (string)

ApplicationSnapUser create set - - (string)

ApplicationSnapVersion create set get (int)

Chapter 4 Objects and their Attributes 49
* usage depends on the application type.
Refer to Administration Console to see which attributes are required for the creation of an application.

Attributes

ApplicationType - - create - - get (int)

ApplicationUserName - - create * set get (string)

ApplicationUserNameUtf8 - - create * set get (string)

ApplicationVCB2OsCryptPassword - - create set get (string)

ApplicationVCB2OsPassword - - create set - - (string)

ApplicationVCB2OsPasswordUtf8 - - create set - - (string)

ApplicationVCB2Server - - create set get (string)

ApplicationVCB2OsUser - - create set get (string)

ApplicationVCB2OsUserUtf8 - - create set get (string)

ApplicationName Name of the application.

ApplicationAlarm List of handles of alarms associated with the
application. If no alarms are attached to the
application, the list is blank.

ApplicationCryptPassword Application password is encrypted for security
reasons during file retrieval and transmission.

ApplicationEnable Application enabled/disabled.

0 Application disabled

1 Application enabled

ApplicationEngenioRootDir Positions the mounting point

ApplicationEngenioRootDirUtf8 Positions the mounting point (path in UTF-8
format)

ApplicationEnvironment List of environment variables written in the
form "name=value".

ApplicationFileList Path of the file containing the FileList
application.

It is true only if the application is of the List
type (ApplicationType = 6).

ApplicationHost Handle of the host to which the application is
attached.

ApplicationHostGroup Handle of the platform group for the
application. If this attribute is absent on creation
of the application, the application is created
within a new platform group.

Attributes Actions Type

50 Time Navigator Shell Scripting
ApplicationNdmpMountPath NDMP mount path.

ApplicationNdmpMountPath Path of the directory where volumes of the file
server are assembled. It is true only if the
application is of the NDMP type
(ApplicationType = 11).

ApplicationNdmpOsCryptpassword NDMP application user password encryption.

ApplicationNdmpOsPassword NDMP application user password.

ApplicationNdmpOsUser NDMP application user.

ApplicationNdmpPassword NDMP user password.

ApplicationNdmpServer Name of the server NDMP to back up.

It is true only if the application is of the NDMP
type (ApplicationType = 11)

ApplicationNdmpUser NDMP user.

ApplicationNetDiskServer Remote machine where the mapped drives to
back up are located.

ApplicationOwner Owner of the application.

ApplicationOwnerPassword Password of the application owner.

ApplicationOwnerPasswordUtf8 Password of the application owner in Utf8.

ApplicationPassword Password of privileged user.

ApplicationPasswordUtf8 Password of privileged user in Utf8.

ApplicationSnapHost Application host.

ApplicationSnapNdmpFiler Snapshot NDMP file server.

ApplicationSnapNdmpTmpDir Completes the description of an NDMP
snapshot for a temporary storage place.

ApplicationSnapPassword Snapshot password.

ApplicationSnapShot Application snapshot.

ApplicationSnapType Application type.

ApplicationSnapTypeEngenio Application snapshot type.

ApplicationSnapUser Snapshot user.

ApplicationSnapVersion Snapshot version.

ApplicationName Name of the application.

Chapter 4 Objects and their Attributes 51
Note When a parent application is replicated as a child application, the child
application inherits certain parameters of the parent application. It is
necessary to use ApplicationParentApp to specify the relationship
between child and parent.

Note A comment field has been added for Applications and their Hosts. The field
is accessible through tina_adm and the Hosts and Apps edit files, the API
and tina_shell and can be seen with tina_config.

ApplicationType Type of application. The list of application
types changes frequently, refer to the on-line
help by entering help ApplicationType in
the tina_shell window.

ApplicationUserName Name of the privileged user.

ApplicationUserNameUtf8 Name of the privileged user in Utf8.

ApplicationOwnerCryptPassword Application owner password is encrypted for
security reasons during file retrieval and
transmission.

ApplicationParentApp Parent application name (see note).

ApplicationReplicaDestApp Destination of replicated application.

ApplicationVCB2OsCryptPasswordvCenter encrypted user password.

ApplicationVCB2OsPassword Password of the vCenter User.

ApplicationVCB2OsPasswordUtf8 Password of the vCenter User in Utf8.

ApplicationVCB2Server Name of the machine on which the Virtual
Center is installed.

ApplicationVCB2OsUser Name of the user who has administration
rights on the Virtual Center, or at least rights
to back up, snapshot and restore.

ApplicationVCB2OsUserUtf8 Name of the user in Utf8 who has
administration rights on the Virtual Center, or
at least rights to back up, snapshot and restore.

ApplicationName Name of the application.

52 Time Navigator Shell Scripting
☞ For an example of a script concerning the Application object, refer to “Enabling
Hosts, Applications and Drivers”, page 127.

Chapter 4 Objects and their Attributes 53
HostGroup Object
The HostGroup object represents a group of hosts or applications. It is an operational
set of hosts or applications with the same backup strategies and classes.
The HostGroup object is accessible indirectly by one of the platforms forming it.
Simply retrieve the value of the HostHostGroup attribute from one of the platforms
of the group. The value retrieved is the handle of the group.

Attributes

■ HostGroupApplication
List of handles of applications belonging to the host group. The list may contain
just one application, or even be empty.

■ HostGroupBackupClass
List of handles of classes associated with the group of hosts or applications.

■ HostGroupHost
List of handles of hosts belonging to the group. The list may contain just one
host, or even be empty.

■ HostGroupStrategy
List of strategy handles associated with the group of platforms. The list may
contain between one and four backup strategies, or even none.

Device Related Objects

Drive Object

The Drive object represents a physical unit. There are three main associations of a
drive:

■ A library (DriveAccessGroupLibrary attribute): It is compulsory to specify the
physical position of the drive in the library. It is possible to have a drive physically
connected to a machine other than the machine that controls the library.

■ One or more groups of users (attribute DriveAccessGroup), who can have access to
manual operations, for example, copying, labelling, and reading.

Attributes Actions Type
HostGroupApplication - - - - - - get (handle list)

HostGroupBackupClass - - - - - - get (handle list)

HostGroupHost - - - - - - get (handle list)

HostGroupStrategy - - - - - - get (handle list)

54 Time Navigator Shell Scripting
■ One of more cartridge pools (attribute DriveAccessGroup), that defines which
cartridges can be loaded in the drive.

Attributes

■ DriveAccessGroup List of handles of access groups associated with the drive.

■ DriveAccessGroupLibrary Handle of library type access group associated with the
library controlling drive. This attribute is only valid if the
loader is automated (DriveLoader= 2).

■ DriveAlarm List of handles of alarms associated with the drive.

■ DriveCartridge "Null" handle or handle of cartridge present in drive.

Attributes Actions Type
DriveAccessGroup - - - - set get (handle list)

DriveAccessGroupLibrary - - - - set get (handle)

DriveAlarm - - - - - - get (handle list)

DriveCartridge - - - - - - get (handle)

DriveConnectList - - create set get (handle list)

DriveConnectType - - create set get (int)

DriveEnable - - create set get (int)

DriveFileSize - - create set get (int)

DriveFull - - - - set get (int)

DriveHost open create - - get (handle)

DriveLastCleaning - - create set get (int)

DriveLoader - - - - - - get (int)

DriveLogicalIndexInLibrary - - create set get (int)

DriveName open create - - get (string)

DriveNbClean - - - - - - get (int)

DriveNbLoad - - - - - - get (int)

DriveNetwork - - create - - get (handle)

DriveNextCleaning - - create set get (int)

DrivePilot - - create set get (string)

DriveSerialNumber - - create set get (string)

DriveStatus - - create set get (int)

DriveTapeLifeTime - - create set get (int)

DriveTimeUsed - - - - - - get (int)

DriveType - - create - - get (int)

DriveUsrName - - create set get (string)

DriveUsrPasswd - - create set - - (string)

DriveVolumeRead - - - - - - get (string)

DriveVolumeWritten - - - - - - get (string)

DriveWorking - - - - - - get (int)

Chapter 4 Objects and their Attributes 55
■ DriveConnectList List of handles of Host/Drive links associated with the
drive.

■ DriveConnectType Drive connection type.
1 Local (default: drive connected locally to a host).
2 SAN (the drive is connected to a network).

Note:
Setting DriveConnectType to the value
DriveConnectTypeSan requires setting the attribute
DriveNetwork, to indicate what host the drive is connected
to.

To set DriveConnectType to the value
DriveConnectTypeLocal, first make sure the drive is
connected to only one host.

■ DriveEnable This attribute must no longer be used. It remains supported
to ensure compatibility but is replaced by the DriveStatus
attribute.

■ DriveFileSize File size in MB (from 256 MB to 200 GB) if the drive is a
Disk Drive.

■ DriveFull Drive holding a cartridge:
0 Drive empty
1 Drive full
To empty a drive, set the attribute value to 0.
You cannot set the attribute value to 1.

■ DriveHost Handle of host the drive is attached to.
Can only be used if the drive is local
(DriveConnectType=1).
Must not be used with the DriveConnectList and
DriveNetwork attributes.

■ DriveLastCleaning Time since last cleaning (in hours).

■ DriveLoader Cartridge loader:
1 Manual loader
2 Automated loader

■ DriveLogicalIndexInLibrary Logical index in library, default is 0.

■ DriveName Name of drive.

56 Time Navigator Shell Scripting
■ DriveNbClean Number of times the drive has been cleaned.

■ DriveNbLoad Number of times a cartridge has been mounted in the drive.

■ DriveNetwork Handle of the network to which the drive is connected.
Can only be used if the drive is connected to a network
(DriveConnectType=2 or 3)
Must not be used with the DriveHost attribute.

■ DriveNextCleaning Time till next cleaning (in hours).

■ DrivePilot Drive device descriptor.

WARNING This attribute must not be used with the DriveConnectList attribute.

Note The syntax depends on the drive type:
Disk Drive
Path of the directory where the Disk Drive cartridges are located.
Drive
UNIX: path of special file associated with drive. Windows: notation "c?b?t?l?".

■ DriveSerialNumber Drive serial number.
To reset the drive serial number, set the attribute
DriveSerialNumber to NULL_STRING. You
cannot set this attribute to any other value.

■ DriveStatus Status of the drive.
0 Disabled.
1 Enabled.
2 Maintenance.

■ DriveTapeLifeTime Lifetime of cartridge (in points).

■ DriveTimeUsed Number of seconds the drive has been used for.

■ DriveType Type of drive. The list of drive types change frequently,
refer to the on-line help by entering help DriveType in
the tina_shell window.

Chapter 4 Objects and their Attributes 57
■ DriveUsrName Name of a user with access rights for a Disk Drive defined
on a network drive.
Only useful if the drive is a Disk Drive.

■ DriveUsrPasswd Password of the user with access rights for a Disk
Drive defined on a network drive.
Only useful if the drive is a Disk Drive.

■ DriveVolumeRead Amount of information that the drive has read.

■ DriveVolumeWritten Amount of information that the drive has written.

■ DriveWorking Drive activity:
1 Reading
2 Writing
3 Rewinding
4 Skip forward
0 No activity
-1 Exception

☞ For an example of a script concerning the Drive object, refer to “Enabling Hosts,
Applications and Drivers”, page 127.

58 Time Navigator Shell Scripting
DriveConnection Object

The DriveConnection object represents the connections between a drive
and one or several hosts. This object is not added in the catalog. It is actually
represented by the associated drive using the DriveConnectList drive
attribute. It is closely related to the Drive object: its own attributes
constitute complementary drive attributes.

To modify one of the attributes, you must first create a new
DriveConnection object, which has no incidence on the catalog. Then,
you must modify the DriveConnectList drive attribute by creating a new
list that consists of the previous connections that do not change and those
you want to modify.

Attributes

■ DriveConnectionDevice Drive device descriptor.

Note The syntax of the device descriptor depends on the type of drive and the operating
system:
Unix: Special file path associated with the drive.
Windows: notation "c?b?t?l?".

■ DriveConnectionDrive Handle of the drive.

Attributes Actions Type
DriveConnectionDevice - - create - - get (string)

DriveConnectionDrive - - - - - - get (handle)

DriveConnectionHost - - create - - get (handle)

DriveConnectionProtocol - - create - - get (int)

DriveConnectionProtocolNdmMaj - - create - - get (int)

DriveConnectionProtocolNdmMin - - create - - get (int)

DriveConnectionProtocolNdmNetAddr - - create - - get (string)

DriveConnectionProtocolNdmPasswd - - create - - - - (string)

DriveConnectionProtocolNdmUser - - create - - get (string)

DriveConnectionProtocolSymMaj - - create - - get (int)

DriveConnectionProtocolSymMin - - create - - get (int)

DriveConnectionProtocolTnaIndice - - create - - get (int)

DriveConnectionProtocolTnaMaj - - create - - get (int)

DriveConnectionProtocolTnaMin - - create - - get (int)

DriveConnectionStatus - - - - set get (int)

Chapter 4 Objects and their Attributes 59
■ DriveConnectionHost Handle of the host the drive is connected to.

■ DriveConnectionProtocol Protocol used for connection:
1TiNa (default)
4NDMP

■ DriveConnectionProtocolNdmMaj First digit of the NDMP protocol version.

■ DriveConnectionProtocolNdmMin Second digit of the NDMP protocol version.

■ DriveConnectionProtocolNdmNetAddr Network name of the drive.

■ DriveConnectionProtocolNdmPasswd NDMP User password.
It is true only if HostProtocolType = 2.

■ DriveConnectionProtocolNdmUser NDMP User.
It is true only if HostProtocolType = 2.

■ DriveConnectionProtocolSymMaj Value of the major version of the Sym API
protocol used by Time Navigator.

■ DriveConnectionProtocolSymMin Value of the minor version of the Sym API
protocol used by Time Navigator.

■ DriveConnectionProtocolTnaIndice Value of the indice of the version of the TiNa
protocol used by Time Navigator.

■ DriveConnectionProtocolTnaMaj Value of the major version of the TiNa protocol
used by Time Navigator.

■ DriveConnectionProtocolTnaMin Value of the minor version of the TiNa protocol
used by Time Navigator.

■ DriveConnectionStatus Status of the drive-host connection:
1: the drive-host connection is enabled
2: the drive-host connection is disabled

60 Time Navigator Shell Scripting
Network Object

The Network object represents the networks that the drives can be attached
to.

Attributes

■ NetworkDrive List of handles of drives attached to the network.

■ NetworkName Name of the network.

■ NetworkType Type of network:
1 SAN
2 LAN (not yet implemented)

Attributes Actions Type
NetworkDrive - - - - - - get (handle list)

NetworkName open create - - get (string)

NetworkType - - create - - get (int)

Chapter 4 Objects and their Attributes 61
Library Object

The Library object is associated with a system (Host), alarms (Alarm), and an access
group (AccessGroup).

Warning When deleting a Library object, delete the AccessGroup object it is asso-
ciated to.

Attributes

■ LibraryAccessGroup Handle of type Library access group associated with the
library.

■ LibraryAlarm List of handles of alarms associated with the library.

■ LibraryCartridge List of cartridges.

■ LibraryCartridgeInMBox List of the cartridges known by the catalog and located in
the mailboxes of the library.

■ LibraryCleaningNb Number of cleaning operations performed.

Attributes Actions Type
LibraryAccessGroup - - create - - get (handle)

LibraryAlarm - - - - - - get (handle list)

LibraryCartridge - - - - - - get (handle list)

LibraryCartridgeInMBox - - - - - - get (handle list)

LibraryCleaningNb - - create set get (int)

LibraryCleaningNbMax - - create set get (int)

LibraryCleaningTape - - create set get (int)

LibraryCleaningTapeSlot - - create set get (int)

LibraryGeoNbCol - - create set get (int)

LibraryGeoSlot0Position - - create set get (int)

LibraryGeoSlot1Position - - create set get (int)

LibraryHost open create - - get (handle)

LibraryLocations - - - - - - get (handle list)

LibraryMailbox - - - - - - get (int)

LibraryPilot open create set get (string)

LibraryShared - - create set get (int)

LibrarySupportBarCode - - create set get (int)

LibraryType - - create - - get (int)

62 Time Navigator Shell Scripting
■ LibraryCleaningNbMax Maximum number of cleaning operations.

■ LibraryCleaningTape Library with a cleaning cartridge:
0 No
1 Yes

■ LibraryCleaningTapeSlot Number of the cleaning cartridge slot.

■ LibraryGeoNbCol Number of columns of the library.

■ LibraryGeoSlot0Position Slot 0 display
1: Slot 0 appears in top left-hand corner
2: Slot 0 appears in top right-hand corner
3: Slot 0 appears in bottom left-hand corner
4: Slot 0 appears in bottom right-hand corner

■ LibraryGeoSlot1Position Slot 1 display
1: Slot 1 is in the same column as Slot 0
2: Slot 1 is on the same line as Slot 0

■ LibraryHost Handle of host to which library is attached. This is
mandatory to open a library.

■ LibraryLocations List of the mailbox locations (appears as a list of handles
of object LibraryLocation).

■ LibraryMailbox Indicates whether there is a mailbox in the library.
0: No mailbox.
1: There is a mailbox.

■ LibraryPilot Library device descriptor.

Note The syntax depends on the unit type and the operating system:
UNIX: Special file path associated with the drive,
Windows: notation "c?b?t?l?".

■ LibraryShared Specifies if the library is shared.
0: the library is shared
1: the library is not shared

■ LibrarySupportBarCode Library supporting bar codes:
0: No
1: Yes

Chapter 4 Objects and their Attributes 63
■ LibraryType Type of library. The list of library types change frequently,
refer to on-line help by entering help LibraryType in
the tina_shell window.

Note In Administration Console, you must define a library type, a name, a device
descriptor and a list of accessible drives. In tina_shell, however, the definition
of the name and list of drives are done via an access group (AccessGroup) of
library type.

64 Time Navigator Shell Scripting
LibraryLocation object

The LibraryLocation object represents the location of a library.

Use the LibraryLocations attribute of the Library object to access the LibraryLocation
object.

Attributes

■ LibraryLocationAccessible Status of the location
1: the location is accessible
0: the location is not accessible

■ LibraryLocationBarCode Barcode of the cartridge (if the location is full).

■ LibraryLocationCartridge Handle of the cartridge (if the location is full and if the
cartridge is known by the catalog).

■ LibraryLocationCleaning 1: the location is a cleaning slot
0: the location is not a cleaning slot

■ LibraryLocationEnable 1: the location is enabled
0: the location is disabled

■ LibraryLocationLock 1: the location is locked
0: the location is not locked

■ LibraryLocationName Name of the location.

■ LibraryLocationType 1: slot
2: drive
3: mailbox
4: picker
0: other type of location

Attributes Actions Type
LibraryLocationAccessible - - - - - - get (int)

LibraryLocationBarCode - - - - - - get (string)

LibraryLocationCartridge - - - - - - get (handle)

LibraryLocationCleaning - - - - - - get (int)

LibraryLocationEnable - - - - set get (int)

LibraryLocationLock - - - - set get (int)

LibraryLocationName - - - - - - get (string)

LibraryLocationType - - - - - - get (int)

Chapter 4 Objects and their Attributes 65
AccessGroup Object of Library type

The AccessGroup object represents a group allowing the association of users with
drives.

A group can be one of the following types:

■ Library: The library type group associates a Library with one or more drives.

■ Cartridge pool: The cartridge pool associates a user with one or more drives. In the latter
case, it is possible to define a retention period.

■ User: The user group associates one or more users with one or more drives.

Attributes

Only the attributes of the AccessGroup object Library type are listed below:

■ AccessGroupAlarm List of handles of alarms associated with access group.

■ AccessGroupDrive List of handles of drives associated with access group.

■ AccessGroupLibrary Handle of library associated with access group.
It is true only if the access group is of library type
AccessGroupType = 1).

■ AccessGroupLibrarySerialNumber Library serial number.

■ AccessGroupName Name of access group (Name of Library).

■ AccessGroupType Type of access group:
1 Library type
2 User type
3 Pool cartridge type

Attributes Actions Type
AccessGroupAlarm - - - - - - get (handle list)

AccessGroupDrive - - - - set get (handle list)

AccessGroupLibrary - - - - - - get (handle)

AccessGroupLibrarySerialNumber - - create - - get (string)

AccessGroupName open create - - get (string)

AccessGroupType - - create - - get (int)

66 Time Navigator Shell Scripting
Cartridge Pool Related Objects

AccessGroup Object of Cartridge Pool Type

The AccessGroup object represents a group allowing the association of users with
drives.

A group can be of the following type:

■ Library: The library type group associates a library with one or more drives.

■ User: A group of users associates one or several users with one or more drives.

■ Cartridge pool: The cartridge pool associates a user with one or more drives.

Attributes

Only the attributes of the AccessGroup object cartridge pool type are listed below:

■ AccessGroupAlarm List of handles of alarms associated with access group.

■ AccessGroupComment ASCII comment stored in the catalog that allows
identification of a cartridge pool.

■ AccessGroupCommentPropagate To be used if the AccessGroupComment or
AccessGroupCommentUtf8 is set. It allows to assign the
comment to the cartridges that already exist.
0 No
1 Yes

■ AccessGroupCommentUtf8 UTF8 comment stored in the catalog that allows
identification of a cartridge pool.

Attributes Actions Type
AccessGroupAlarm - - - - - - get (handle list)

AccessGroupComment - - create set get (string)

AccessGroupCommentpPropagate - - - - set - - (int)

AccessGroupCommentUtf8 - - create set get (string)

AccessGroupDrive - - - - set get (handle list)

AccessGroupName open create - - get (string)

AccessGroupPolicy - - create set get (int)

AccessGroupRetUnit - - create set get (int)

AccessGroupRetValue - - create set get (int)

AccessGroupType - - create - - get (int)

AccessGroupUser - - - - - - get (handle list)

Chapter 4 Objects and their Attributes 67
■ AccessGroupDrive List of handles of drives associated with access group.

■ AccessGroupName Name of access group (name of the cartridge pool).

■ AccessGroupPolicy Management policy for the cartridge pool. It is true only if
the access group is of the cartridge pool type
(AccessGroupType = 3):
1 Infinite pool
2 Cyclical pool

■ AccessGroupRetUnit Retention unit of a cartridge. It is true only if the access
group is of the cartridge pool type
(AccessGroupType = 3)
and the management of the pool cycle
(AccessGroupPolicy =2):
1 Day
2 Week
3 Month
4 Year

■ AccessGroupRetValue Retention period [0-99] of a cartridge. It is true only if the
access group is the cartridge pool type
(AccessGroupType = 3)
and the management of the pool cycle
(AccessGroupPolicy =2).

■ AccessGroupType Type of access group:
1 Library type
2 User type
3 Cartridge pool type

■ AccessGroupUser List of handles of users associated with the user group. The
list contains a single element in the case of a pool of
cartridges (AccessGroupType = 3). It is true only if
the access group is a user type or a cartridge pool
(AccessGroupType = 2 or 3).

Note Total definition of a cartridge pool must be via association with a user. The
name of this user is used for the prefix of labels and the list of cartridges
present in the pool, via a list of handles.

☞ For a script example implementing an AccessGroup object of a cartridge pool type, refer
to “Getting a Cartridge List via a Cartridge Pool”, page 134.

68 Time Navigator Shell Scripting
User Object of Cartridge Pool Type

The User object represents a user that can be associated with:

■ An access group (AccessGroup) of cartridge pools: the user represents the label of
cartridges (the prefix set in the definition of a pool of cartridges). The user has a list of
cartridges belonging to him/her, this is therefore the list of cartridges in the pool.

■ An access group (AccessGroup) of the User type: represents the users of the operating
system.

Attributes

■ UserAccessGroup Handle of the access group associated with the user. Here access
group type pool of cartridges. The handle is Null if no access
group is attached.

■ UserAlarm List of handles of alarms associated with the user.

■ UserCartridge List of handles of cartridge(s) associated with the user.

■ UserName Label Prefix for the pool of cartridges. The syntax corresponds to
UNIX.

Warning Do not confuse users attached to user groups of type "cartridge pool" with
users attached to user groups of type "user".

Attributes Actions Type

UserAccessGroup - - create set get (handle)

UserAlarm - - - - - - get (handle list)

UserCartridge - - - - - - get (handle list)

UserName open create - - get (string)

Chapter 4 Objects and their Attributes 69
User Related Objects

AccessGroup Object of User Type

The AccessGroup object represents a group that allows users to be associated with
drives.

A group can be of the following types:

■ Library: The Library type group associates a library with one or more drives.

■ Users: A user group associates one or several users with one or more drives.

■ Cartridge Pool: Cartridge pool associates a user with one or more drives.

Note The users represent the users of the operating system. They cannot be created in
tina_shell. The creation of the users can only be done from Administration
Console.

Note Cartridges associated with the user, in this context, correspond to local archiving
cartridges.

Attributes Actions Type
AccessGroupAlarm - - - - - - get (handle list)

AccessGroupDrive - - - - set get (handle list)

AccessGroupName open create - - get (string)

AccessGroupType - - create - - get (int)

AccessGroupUser - - - - - - get (handle list)

70 Time Navigator Shell Scripting
Attributes

■ AccessGroupAlarm
List of handles of alarms associated with access group.

■ AccessGroupDrive
List of handles of drives associated with access group.

■ AccessGroupName Name of access group (Name of user group).

■ AccessGroupType
Type of access group:
1 Library type
2 User type
3 Cartridge pool type.

■ AccessGroupUser
List of handles of users associated with the user group. It is true only if the
access group is a user type or a cartridge pool (AccessGroupType = 2 or 3).

Chapter 4 Objects and their Attributes 71
User Object of User Type
The User object represents a user that can be of the following types:

■ An access group (accessgroup) of cartridge pool type: in this case, it is the cartridge
label (a set prefix in the definition of the cartridge pool).

■ An access group (accessgroup) of User type: in this case, it is the operating system
users.

Attributes

■ UserAccessGroup Handle of access group associated with the user. Here a User type
Access group. The Handle is Null if no access group is attached.

■ UserAccessRights List of all the existing access rights in Time Navigator indicating
whether each right is enabled or not for the user.

■ UserAlarm List of handles of alarms associated with a user.

■ UserCartridge List of handles of cartridge(s) associated with a user.

■ UserGid Gid (Identifier of the Group).

■ UserIsPrivileged Indicates if the user is the privileged user or not.

■ UserName User name.

■ UserPassword User password.
Can only be modified by its own user or by another user who has
the User group Management rights.

Attributes Actions Type
UserAccess - - - - set get (int)

UserAccessArchiving - - - - set get (int)

UserAccessBackup - - - - set get (int)

UserAccessCartridge - - - - set get (int)

UserAccessGeneral - - - - set get (int)

UserAccessGroup - - create set get (handle)

UserAccessOther - - - - set get (int)

UserAlarm - - - - - - get (handle list)

UserCartridge - - - - - - get (handle list)

UserGid - - - - - - get (int)

UserIsPrivileged - - - - - - get (int)

UserName open create - - get (string)

UserPassword - - create set - - (string)

UserUid - - - - - - get (int)

UserAccessRights - - - - set get (int list)

72 Time Navigator Shell Scripting
■ UserUid Uid (Identifier of the User).

The following attributes concern the access rights and correspond to the
Control window of Administration Console. Before being used in
tina_shell, these rights must be defined in Administration Console. You
can then recover their values in tina_shell using the command get, and
reassign these using the command set during the creation of a new
configuration in Time Navigator.

The values of these attributes are not directly readable, but their handling
can be useful such as in the case where you want to automate the creation
of the same configuration Time Navigator on several servers using a
tina_shell script.

■ UserAccess

■ UserAccessArchiving

■ UserAccessBackup

■ UserAccessCartridge

■ UserAccessGeneral

■ UserAccessOther

Warning Do not confuse the type User associated to a group of type Cartridge pool
and those associated to a group of type User.

Note The users represent the users of the operating system. They cannot be created in
tina_shell. The creation of the users can only be done from Time Navigator.

Data Related Objects

Catalog Object

The catalog object represents the heart of the administration catalog. The information
obtained are the cells that are displayed in Administration Console, the composition of the
cache, free space (MB) and details of the cache (Disk / memory).

Attributes Actions Type
CatalogCacheVolumeRead - - - - - - get (int)

Chapter 4 Objects and their Attributes 73
Attributes
■ CatalogCacheVolumeRead Size of the cache used for reading data, in MB.

■ CatalogCacheVolumeWrite Size of the cache used for writing data, in MB.

■ CatalogCartLabelPrefix String that prefixes all cartridge labels for this
catalog.

■ CatalogCurrentUserName Name of the current user of the catalog.

■ CatalogCurrentUserNameUtf8 Name of the current user of the catalog in Utf8.

■ CatalogDefaultUsrAccessRights List of all the existing access rights in
Time Navigator indicating whether each right is
enabled or not for the user.

■ CatalogDiskCacheVolumeFree Free disk cache, in MB.

■ CatalogDiskCacheVolumeTotal Total disk cache, in MB.

■ CatalogInstance Number of instances.

■ CatalogMaxOnDemandBackup Maximum number of simultaneous on demand
backups.

■ CatalogMemoryCacheVolumeFree Free volume of memory cache assigned to the
catalog.

■ CatalogMemoryCacheVolumeTotal Total volume of memory cache assigned to the
catalog.

CatalogCacheVolumeWrite - - - - - - get (int)

CatalogCartLabelPrefix - - - - set get (string)

CatalogCurrentUserName - - - - - - get (string)

CatalogCurrentUserNameUtf8 - - - - - - get (string)

CatalogDefaultUsrAccessrRghts - - - - set get (int list)

CatalogDiskCacheVolumeFree - - - - - - get (int)

CatalogDiskCacheVolumeTotal - - - - - - get (int)

CatalogInstance - - - - - - get (int)

CatalogMaxOnDemandBackup - - - - set get (int)

CatalogMemoryCacheVolumeFree - - - - - - get (int)

CatalogMemoryCacheVolumeTotal - - - - - - get (int)

CatalogName open - - - - get (string)

CatalogObject - - - - - - get (int)

CatalogVolumeFree - - - - - - get (int)

CatalogVolumeTotal - - - - - - get (int)

Attributes Actions Type

74 Time Navigator Shell Scripting
■ CatalogName Catalog name. The tina_shell language
requires at least one argument on opening.
Whatever the choice of CatalogName, it is
always the catalog to be administered that is
opened (interrogation of the CatalogName gives
the name of this catalog).

■ CatalogObject Number of objects.

■ CatalogDiskCacheVolumeFree Free disk cache, in MB.

■ CatalogVolumeTotal Catalog volume, in MB.

☞ For a script example concerning a Catalog object, refer to “Getting Catalog
Information”, page 131.

Chapter 4 Objects and their Attributes 75
Cartridge Object

The Cartridge object represents a labelled cartridge. A cartridge is associated with the
owner user who is associated to an access group (AccessGroup). If the cartridge is
mounted, it is associated only to one drive. The cartridge type corresponds to the type
of drive used to write its label. It is also associated with alarms.

Note The creation of a cartridge object corresponds to Cartridge-Label-Write menu
in Administration Console.

Attributes Actions Type
CartridgeAlarm - - - - - - get (handle list)

CartridgeBarCode - - - - - - get (string)

CartridgeCloseStatus - - - - set get (int)

CartridgeComment - - create set get (string)

CartridgeCommentUtf8 - - create set get (string)

CartridgeContainer - - - - - - get (handle)

CartridgeDateCreate - - - - - - get (int)

CartridgeDateLastBck - - - - - - get (int)

CartridgeDateReused - - - - - - get (int)

CartridgeDescription - - - - - - get (string)

CartridgeDrive - - create - - get (handle)

CartridgeFileNb - - - - - - get (int)

CartridgeFillStatus - - - - - - get (int)

CartridgeFormat - - - - - - get (int)

CartridgeLocation - - - - set - - (int)

CartridgeLocked - - - - - - get (boolean)

CartridgeName open - - - - get (string)

CartridgeNbLoad - - - - - - get (int)

CartridgeNbRecycle - - - - - - get (int)

CartridgeNbTapeFile - - - - - - get (int)

CartridgeNumber - - create - - get (int)

CartridgeOperationMask - - - - - - get (int)

CartridgePathLocation - - - - set get (string)

CartridgeRetUnit - - - - - - get (int)

CartridgeRetValue - - - - set get (int)

CartridgeStatus - - - - set get (int)

CartridgeTimeUsed - - - - - - get (int)

CartridgeType - - - - - - get (int)

CartridgeUseNb - - - - - - get (int)

CartridgeUseNbMax - - - - - - get (int)

CartridgeUser - - create - - get (handle)

CartridgeVolume - - - - - - get (int)

CartridgeVolumeRead - - - - - - get (string)

76 Time Navigator Shell Scripting
CartridgeVolumeWritten - - - - - - get (string)

Attributes Actions Type

Chapter 4 Objects and their Attributes 77
Attributes

■ CartridgeAlarm List of handles of alarms associated with cartridge.

■ CartridgeBarCode Bar code associated with cartridge or EmptyString if no
associated bar code.

■ CartridgeCloseStatus Status of the cartridge (open, closed, reopened).

■ CartridgeComment ASCII comment stored in the catalog that allows to identify a
cartridge. If no comment is specified, the cartridge pool comment
is used.

■ CartridgeCommentUtf8 UTF8 comment stored in the catalog that allows to identify a
cartridge. If no comment is specified, the cartridge pool comment
is used.

■ CartridgeContainer Handle of the object containing the cartridge.

■ CartridgeDateCreate Date of cartridge creation.

■ CartridgeDateLastBck Date of last backup.

■ CartridgeDateReused Date of last recycling of cartridge or date of its creation if no
recycling.

■ CartridgeDescription Descriptive character string of a cartridge. By default, name of
the current catalogue.

■ CartridgeDrive Handle of last drive used for cartridge or drive selected for
labelling.

■ CartridgeFileNb Number of tape files on cartridge (including label).

■ CartridgeFillStatus Filling level of the cartridge.

■ CartridgeFormat Cartridge format:
1 Tar format
2 Cpio format
3 TiNa format
5 Fastrax format
6 Sidf format
7 Unknown format

78 Time Navigator Shell Scripting
■ CartridgeLocation Putting a cartridge off-line
1 Cartridge in mailbox or move cartridge to mailbox (set/get)
2 Cartridge in the library (get)
3 Cartridge in the drive (get)
4 Cartridge outside the library/drive (get)

■ CartridgeLocked Indicates whether the cartridge is locked by another process. A
test is performed to ensure the validity of the lock.

■ CartridgeName Cartridge name, syntax: <Label prefix><Name of owner
user><Cartridge number>.

■ CartridgeNbLoad Number of times the cartridge was mounted in a drive.

■ CartridgeNbRecycle Number of times the cartridge has been recycled.

■ CartridgeNbTapeFile Number of files on tape drives (acting as cartridges).

■ CartridgeNumber Cartridge number.

■ CartridgeOperationMask Indicates the operations that can be performed on the cartridge.
The value is a bit mask that must be decoded.
1 Duplicate
2 Recycle
4 Close
8 Reopen
16 Delete
32 ToSpare
64 SafeRecycle
128 SafeToSpare
256 SafeDelete

■ CartridgePathLocation Cartridge location.

■ CartridgeRetUnit Indicates the cartridge whose retention you are seeking.
Retention is no longer based on the pool but on individual
cartridges.
If a security rule has been attached to a cartridge, the retention of
this rule overrides the pool retention.

■ CartridgeRetValue Indicates the value of the cartridge retention.

Chapter 4 Objects and their Attributes 79
■ CartridgeStatus Cartridge status:
1 Cartridge empty
2 Cartridge partly full
3 Cartridge closed, full
4 Cartridge closed on incident
5 Cartridge closed at initialization
6 Cartridge closed manually
7 Cartridge to be reopened (temporary state)
8 Cartridge cleared

■ CartridgeTimeUsed Number of hours the cartridge has been used for.

■ CartridgeType Type of cartridge, identical to the type of unit which created it.

■ CartridgeUseNb Number of uses of cartridge.

■ CartridgeUseNbMax Maximum number of uses of cartridge.

■ CartridgeUser Handle of user owner. User or pool of cartridge type
AccessGroup.

■ CartridgeVolume Space occupied on cartridge (in MB).

■ CartridgeVolumeRead Amount of data that has been read from the cartridge.

■ CartridgeVolumeWritten Amount of data that has been written on the cartridge.

☞ For a script example concerning a Cartridge object, refer to “Getting a Cartridge List
via a Cartridge Pool”, page 134.

80 Time Navigator Shell Scripting
Job Object

The Job object represents a data read and/or write operation. It can be active (observed
in real time), or finished and sent to the history.

Note This object cannot be created since it only gathers information.

Attributes

Attributes Actions Type
JobAlarms - - - - - - get (handle list)

JobAlarmSeverity - - - - - - get (int)

JobCacheTotal - - - - - - get (int)

JobCacheUsed - - - - - - get (int)

JobCurrentObject - - - - - - get (string)

JobDateCreate - - - - - - get (int)

JobDateEnd - - - - - - get (int)

JobDateRun - - - - - - get (int)

JobDateSubmit - - - - - - get (int)

JobExecutions - - - - - - get (int)

JobExecutionsInterval - - - - - - get (int)

JobExecutionsMax - - - - - - get (int)

JobExpectedVolume - - - - - - get (string)

JobFolder - - - - - - get (string)

JobFormatRead - - - - - - get (int)

JobFormatWrite - - - - - - get (int)

JobHost - - - - - - get (handle)

JobId open - - - - get (int)

JobMode - - - - - - get (int)

JobOperationMask - - - - - - get (int)

JobParallelismRead - - - - - - get (int)

JobParallelismWrite - - - - - - get (int)

JobPlatformClass - - - - - - get (int)

JobPlatformHandle - - - - - - get (handle)

JobPoolNameRead - - - - - - get (string list)

JobPoolNameWrite - - - - - - get (string list)

JobProcessedObjects - - - - - - get (int)

JobProcessedVolume - - - - - - get (string)

JobPropertyMask - - - - - - get (int)

JobRank - - - - set - - (int)

JobStatus - - - - set get (int)

JobStrategyName - - - - - - get (int)

JobType - - - - - - get (int)

JobUser - - - - - - get (handle)

Chapter 4 Objects and their Attributes 81
■ JobAlarmSeverity Severity of the alarm associated to the job.
0 No severity
1 Minor severity
2 Major severity
3 Critical severity

■ JobCacheTotal Total number of cache blocks.

■ JobCacheUsed Number of cache blocks used.

■ JobCurrentObject Name of object currently being processed.

■ JobDateCreate Creation date
- 3 Incorrect date (if the job was not created).

■ JobDateEnd End date
-3 Incorrect date (if job was not finished).

■ JobDateRun Start date
- 3 Incorrect date (if the job was not started).

■ JobDateSubmit Submission date
-3 Incorrect date (if the job was not submitted).

■ JobExecutions Number of job executions.

■ JobExecutionsInterval Interval between two executions.

■ JobExecutionsMax Maximum number of executions.

■ JobExpectedVolume Expected volume, in the form of string with thousands separator.

■ JobFolder Name of source or destination folder (Job type backup, synthetic
backup, archive, restore, duplication, export source and export
target)
-1 Invalid value.

■ JobFormatRead Read format (job type duplication):
1 TiNa format
2 tar format
3 Cpio format
4 Fastrax format
5 Sidf format
6 Unknown
-1 Invalid value

82 Time Navigator Shell Scripting
■ JobFormatWrite Write format (Job type backup, synthetic backup, archive,
duplication, export source and export target):
1 Format TiNa
2 Format tar
3 Format cpio
4 Fastrax format
5 Sidf format
6 Unknown
-1 Invalid value

■ JobHost Handle of host executing job or value returned: Invalid handle.

■ JobId Unique job identification number.

■ JobMode Backup mode (Job type backup, synthetic backup, export
source and export target):
1 Full mode for job
2 Incremental mode for job
-1 Invalid value

■ JobOperationMask Indicates the operations that can be performed on the job. The
value is a bit mask that must be decoded.
1 Abort
2 Suspend
4 Restart
8 Rank

■ JobParallelismRead Degree of parallelism on read (Job type backup, synthetic
backup, archive, restore, duplication, export source and export
target):
-5 Total parallelism
The values 2 to 4 correspond to the degree of parallelism
-1 Invalid value

■ JobParallelismWrite Degree of parallelism on write (Job type backup, synthetic
backup, export source and export target):
-5 Total parallelism
The values from 2 to 4 correspondent to the degree of parallelism
-1 Invalid value.

■ JobPlatformClass Class of backed up platform (Job type backup, synthetic
backup, export source, export target, catalog maintenance):
1 Host platform class
2 Application platform class

■ JobPlatformHandle Handle of backed up platform (Job type backup, synthetic
backup, export source and export target).

■ JobPoolNameRead Name of cartridge pools corresponding to drive sessions.

Chapter 4 Objects and their Attributes 83
■ JobPoolNameWrite Name of cartridge pools corresponding to write sessions.

■ JobProcessedObjects Number of processed jobs.

■ JobProcessedVolume Processed volume, in the form of string with thousands separator.

■ JobPropertyMask Job property:
PropertyMaskOnDemandBackup: On-demand backup job
PropertyMaskReplication: Replication job
PropertyMaskSnapshot: Snapshot backup

■ JobRank Change job priority ranking:
1 Go to higher ranking
2 Go to lower ranking
3 Go to first ranking
4 Go to last ranking

■ JobStatus Job status, retrievable by Get function:
1 Sessions not created
2 Sessions created and ready
3 Suspended on request
4 Suspended automatically
5 Running
6 Suspending on request
7 Returning to Ready
8 Suspending automatically
9 Stopping after tina_stop
10 Stopping on error
11 Stopping on abort request
12 Stopping on suspend request
13 Terminated after tina_stop
14 Terminated on error
15 Terminated on abort
16 Terminated on suspension
17 Terminated normally
18 Restart

Job status that can be modified with the Set function:
15 Terminated on abort
16 Terminated on suspension
18 Restart
19 Scheduled
20 Terminated but not started
21 TerminatedNot Reachable

84 Time Navigator Shell Scripting
■ JobStrategyName Strategy name (Job type backup, synthetic backup, export
source and export target):
1 Strategy A
2 Strategy B
3 Strategy C
4 Strategy D
otherwise, the returned value is -1.

■ JobType Type of job:
1 Backup
2 Synthetic backup
3 Archiving
4 Restore
5 Duplication
6 Source export
7 Target export
8 Catalog maintenance

■ JobUser Handle of user/job owner
-6 Root user or value returned: "Invalid handle".

☞ For an example of a script implementing a Job object, refer to “Getting a Job List and
its Characteristics”, page 130.

Chapter 4 Objects and their Attributes 85
Alarm Object

The Alarm object represents an alarm triggered during an operation, linked to an object
indicated by the AlarmObjectHandle attribute.

Note This object cannot be created since it only gathers information.

Attributes

■ AlarmAcknowledged
Acknowledgement of alarm:
0 Unacknowledged
1 Temporary acknowledgement
2 Permanent acknowledgement

■ AlarmCount
Number of identical alarms.

■ AlarmDate
Date of alarm.

■ AlarmDateLast
Date of last identical alarm.

■ AlarmHelp
Alarm help ID to associate with an alarm help message. The help ID must be
between 0 and 10000.

Attributes Actions Type
AlarmAcknowledged - - - - set get (int)

AlarmCount - - - - - - get (int)

AlarmDate - - - - set get (int)

AlarmDateLast - - - - - - get (int)

AlarmHelpId - - create - - get (int)

AlarmHelpMessage - - - - - - get (string)

AlarmHelpMessageUtf8 - - - - - - get (string)

AlarmId open - - - - get (int)

AlarmMessage - - - - - - get (string)

AlarmObjectClass - - - - - - get (int)

AlarmObjectHandle - - - - - - get (handle)

AlarmSeverity - - - - - - get (int)

86 Time Navigator Shell Scripting
■ AlarmHelpMessage
Alarm help message.

■ AlarmHelpMessageUtf8
Alarm help message in Utf8.

■ AlarmId
Alarm ID.

■ AlarmMessage
Text of alarm message.

■ AlarmObjectClass
Object class concerned by the alarm:
1 Host class
2 Drive class
3 Access group class
4 User class
5 Library class
6 Cartridge class
7 Application class

■ AlarmObjectHandle
Handle of object concerned by the alarm.

■ AlarmSeverity
Level of severity of alarm:
1 Minor severity
2 Major severity
3 Critical severity

Note To create a new alarm on an object, use the API. Refer to TNAlarm.

Backup Related Objects

Strategy Object

The Strategy object represents a backup strategy in the Time Navigator sense. A strategy
is associated with a group of hosts or applications (HostGroup).

Attributes Actions Type
StrategyContErrMultipleWriting - - create set get (int)

StrategyEpilog - - create set get (string)

StrategyFioMode - - create set get (int)

Chapter 4 Objects and their Attributes 87
Attributes

■ StrategyContErrMultipleWriting

Specifies if a backup must continue if one of the multiple writing sessions fails.
0 Backup does not continue.
1 Backup continues.

■ StrategyEpilog
Post processing script.

StrategyFormat - - create set get (int)

StrategyFtxAccessGroup - - - - set get (handle list)

StrategyFtxMaxParallelIdxFull - - - - set get (int)

StrategyFtxMaxParallelIdxIncr - - - - set get (int)

StrategyFullAccessGroup - - create set get (handle list)

StrategyFullEnable - - create set get (int)

StrategyFullNext - - create set get (int)

StrategyFullSchedule - - create set get (handle)

StrategyFullSynthetic - - create set get (int)

StrategyHostGroup open create - - get (handle)

StrategyIncrAccessGroup - - create set get (handle list)

StrategyIncrEnable - - create set set (int)

StrategyIncrSchedule - - create set get (handle)

StrategyLanFree - - create set get (int)

StrategyManageACL - - create set get (int)

StrategyMultiplexable - - create set get (int)

StrategyName open create - - get (int)

StrategyNFS - - create set get (int)

StrategyOnDemandBackup - - create set get (int)

StrategyProlog - - create set get (string)

StrategyRelaunchable - - create set get (int)

StrategyReplicaDestApp - - create set get (handle)

StrategyReplicaKeepInst - - create set get (int)

StrategyRetryInterval - - create set get (int)

StrategyRetryNumber - - create set get (int)

StrategySnapAccessGroup - - create set get (handle)

StrategySnapCommand - - create set get (string)

StrategySnapKeep - - create set get (int)

StrategyStandBy - - - - set get (int)

StrategySynchro - - create set get (int)

StrategyType - - create set get (int)

Attributes Actions Type

88 Time Navigator Shell Scripting
■ StrategyFioMode
Specifies if the Fastrax serverless backup mode is enabled.
0 Disabled
1 Enabled

■ StrategyFormat
Data write format:
1 tar format
2 Cpio format
3 TiNa format
5 Fastrax format
6 Sidf format
7 Unknown format

■ StrategyFtxAccessGroup
List of handles of cartridge pool type access groups used for Fastrax.
Can only be used if the Fastrax backup mode is enabled
(StrategyFioMode=1).

■ StrategyFtxMaxParallelIdxFull
Maximum parallel index for full backups.
Can only be used if the Fastrax backup mode is
enabled (StrategyFioMode=1).

■ StrategyFtxMaxParallelIdxIncr
Maximum parallel index for incremental backups.
Can only be used if the Fastrax backup mode is
enabled (StrategyFioMode=1).

■ StrategyFullAccessGroup
List of handles of cartridge pool type access groups used for full backups.

■ StrategyFullEnable
0 Full backup deactivated
1 Full backup activated.

■ StrategyFullNext Date of the next full backup of the strategy.

■ StrategyFullSchedule Schedule for full backup strategy.

■ StrategyFullSynthetic
0 Synthetic backup deactivated
1 Synthetic backup activated

■ StrategyHostGroup
Handle of the group of hosts or applications associated with the strategy.

Chapter 4 Objects and their Attributes 89
■ StrategyIncrAccessGroup
List of handles of cartridge pool type access groups used for incremental
backups.

■ StrategyIncrEnable
0 Incremental backup deactivated
1 Incremental backup activated.

■ StrategyIncrSchedule Schedule for incremental backup strategy.

■ StrategyLanFree
Specifies if the LAN-free backup mode is enabled.
0 Disabled.
1 Enabled.
Must not be used if the macromutiplexing is enabled
(StrategyMultiplexable=1 or 2) or if multiple writing is performed.

■ StrategyManageACL
Backup of Access Control Lists (ACL).
0 No
1 Yes

■ StrategyMultiplexable
Backs up in macro-multiplexing mode:
0 None.
1 For full and incremental backups.
2 For incremental backup only.

■ StrategyName
Strategy name:
1 Strategy A
2 Strategy B
4 Strategy C
8 Strategy D

■ StrategyNFS
Crossing NFS links:
0 Do not cross NFS links
1 Cross NFS links

■ StrategyOnDemandBackup
Indicates if the strategy is usable or not by on-demand backups:
0 No
1 Yes

■ StrategyProlog
Preprocessing script.

90 Time Navigator Shell Scripting
■ StrategyRelaunchable
Specifies if the backup session is relaunched until platform is reachable.
0 The backup session is not relaunched
1 The backup session is relaunched

■ StrategyReplicaDestApp Application replication destination.

■ StrategyReplicaKeepInst Keeps an instance of a replica.

■ StrategyRetryInterval Interval between two retries on incident.

■ StrategyRetryNumber Number of retries on incident.

■ StrategySnapAccessGroupGets the access group for a strategy snapshot.

■ StrategySnapCommand Takes a snaphot of the strategy.

■ StrategySnapKeep Keeps a strategy snaphot that has been taken.

■ StrategyStandBy
Specifies if the backup session is waiting for a platform to be brought online.
0 Strategy is not on standby.
1 Incremental strategy is on standby (get).
2 Full strategy is on standby (get).
4 Force to reset incremental strategy (set).
8 Force to reset full strategy (set).

■ StrategySynchro
Synchronization of writing to cartridges:
0 No
1 Yes

■ StrategyType Strategy types are: Backup (1), SnapShot (2), Replication
(3).

Note The definition of a strategy is only part of the backup definition. The backup is
only completely defined after positioning one or more of the backup classes.

NOTE The new attributes StrategyFullSchedule and StrategyIncrSchedule are
NOT compatible with the deleted strategy attributes in version 4.1. You
MUST modify and recompile any executable or tina_shell script using the
old attributes. See the following section for details.

Chapter 4 Objects and their Attributes 91
Backup ClassObject

The BackupClass object represents a backup class. A backup class is associated to a
group of hosts or applications (HostGroup) and applies to all platforms in the group. It
determines the directories to back up within the associated strategies, regardless of any
filter currently set.

Attributes

■ BackupClassDayNumber Filter selection of the last modified date. Time Navigator
backs up only the files having been modified since the
days that are more recent than the one specified.
True only if BackupClassFilterDateOn = 1.

■ BackupClassFilterDateOn Date modification filter:
0 The date modification filter is off
1 The date modification filter is on

■ BackupClassFilterNameOn Selection filter or exclusion of the name:
0 The selection filter or exclusion of the name is off
1 The selection filter or exclusion of the name is on

■ BackupClassFilterSizeOn Size filter:
0 The size filter is off
1 The size filter is on

Attributes Actions Type
BackupClassDayNumber - - create set get (int)

BackupClassFilterDateOn - - create set get (int)

BackupClassFilterNameOn - - create set get (int)

BackupClassFilterSizeOn - - create set get (int)

BackupClassFormat - - create set get (int)

BackupClassHostGroup open create - - get (handle)

BackupClassMaxSize - - create set get (int)

BackupClassPath open create - - get (string)

BackupClassPhaseTime - - create set get (int)

BackupClassReject - - create set get (string)

BackupClassSelect - - create set get (string)

BackupClassStrategyName - - create set get (int)

92 Time Navigator Shell Scripting
■ BackupClassFormat Cartridge format:
0 None
1 Compressed
2 Encoded
These attributes can be combined.

■ BackupClassHostGroup Handle of associated group of hosts or applications.

■ BackupClassMaxSize Filter selection of the file size. Time Navigator backs up
only the files whose size does not exceed the specified
value. It is only true if BackupClassFilterSizeOn=1:
0 Infinite
1 100 bytes
2 1 KB
3 10 KB
4 100 KB
5 1 MB
6 10 MB
7 100 MB
8 1 GB

■ BackupClassPath Class name, such as the absolute access path in
Time Navigator (format Unix = /usr/people1/
bjr/files).

■ BackupClassPhaseTime Phase time mask. The value of this attribute corresponds to
the value of 2 activation hour.
If you want to activate the backup between 0:00 and
1:00, the attribute value is 20, therefore 1. Refer to the table
below for the different attribute values.

Chapter 4 Objects and their Attributes 93
■ BackupClassReject Exclusion mask. Rejection of character string, with UNIX
syntax. The constraints to be verified are separated by a
blank space. Example: "*.o core"

■ BackupClassSelect Selection filter. Selection character string, with UNIX
syntax. The constraints (filter elements) to be verified are
separated by a blank space.
Example: "/usr/* /bin/*"
This is true only if BackupClassFilterNameOn=1

■ BackupClassStrategyName Strategy mask:
1 Strategy A
2 Strategy B
4 Strategy C
8 Strategy D
You can define several strategies by combining the values.
(Ex: 15=1+2+4+8 equivalent to all strategies).

Exponent of 2 Attribute Value Activation Hour

20 1 0:00

21 2 1:00

22 4 2:00

23 8 3:00

24 16 4:00

25 32 5:00

26 64 6:00

27 128 7:00

...

221 2097152 21:00

222 4194304 22:00

223 8388608 23:00

224 16777215 All schedules

0 0:00

94 Time Navigator Shell Scripting
Backup Object

The Backup object represents a backup under Time Navigator. The Backup object can
only be created and is used to launch backups.

This object does not exist as such in tina_shell. At its creation, it is a handle of the
Job object that is returned. A Folder object is automatically created at the first host
backup. It is possible to open the object to read its attributes.

Attributes

■ BackupDate Official date of backup operation.

Warning This attribute makes it possible to antedate the result but not define a sched-
ule for backups.

■ BackupFileList Path of a file containing the list of the files to be backed up.
Allows backing up files without defining a class.

■ BackupFormat Indicates the backup data format.
0 No format
1 Compressed format
2 Encoded format
You can define several formats by combining the values in a
mask. (Ex: 3=1+2 equivalent to compressed and encoded).

Attributes Actions Type
BackupDate - - create - - - - (int)

BackupFileList - - create - - - - (string list)

BackupFormat - - create - - - - (int)

BackupMode - - create - - - - (int)

BackupNoErrOnBckp - - create - - - - (boolean)

BackupNoRewind - - create - - - - (int)

BackupPassword - - create - - - - (string)

BackupPlatformClass - - create - - - - (int)

BackupPlatformHandle - - create - - - - (handle)

BackupStrategyName - - create - - - - (int)

BackupSynchro - - create - - - - (int)

BackupUser - - create - - - - (string)

Chapter 4 Objects and their Attributes 95
■ BackupMode Backup mode:
1 Full mode (by default)
2 Incremental mode

■ BackupNoErrOnBckp Determines if an error is returned or not upon an error in the
operation.

■ BackupNoRewind No-rewind mode.

■ BackupPassword Password of the user.

■ BackupPlatformClass Class of backed up platform:
1 Host
2 Application

■ BackupPlatformHandle Handle of backed up platform.

■ BackupStrategyName Name of the strategy(s) to be taken into account:
1 Strategy A
2 Strategy B
4 Strategy C
8 Strategy D

■ BackupSynchro Wait for end or write on cartridges.

■ BackupUser User having the access rights to the machine to be backed up.

☞ For an example regarding the Backup object, refer to “Launching a Backup”, page 128.

96 Time Navigator Shell Scripting
Schedule Object

The Schedule object represents a schedule under Time Navigator.

Attributes

■ ScheduleComment Specifies the comment associated to the schedule.

■ ScheduleCommentUtf8 Specifies the comment associated to the schedule in UTF-8.

■ ScheduleName Specifies the schedule name.

■ ScheduleNameUtf8 Specifies the schedule name in UTF-8.

■ ScheduleProperties Specifies the schedule properties which can be:
SchedulePropertiesNone: specifies no properties.
SchedulePropertiesVerbose: spedifies properties in detail.

■ ScheduleRules List of schedule rules associated with a schedule.

Attributes Actions Type
ScheduleComment - - create set get (string list)

ScheduleCommentUtf8 - - create set get (string list)

ScheduleName open create set get (string list)

ScheduleNameUtf8 open create set get (string list)

ScheduleProperties - - create set get (int)

ScheduleRules - - - - - - get (handle)

Chapter 4 Objects and their Attributes 97
Scheduler Object

The scheduler object represents a scheduler in Time Navigator.

You can open it without specifying an attribute.

Attributes

■ SchedulerAlarmUnit 0 none
1 minute
2 hour
3 day
4 week

■ SchedulerAlarmValue Period of time after which the alarm is set off if the
scheduler is disabled (this value is expressed in the unit
chosen in SchedulerAlarmUnit).

■ SchedulerHolidays Specifies the non-working days. Strings must follow the
YYYY-MM-DD pattern (ie 2007-12-25).

■ SchedulerMaxNbJobs The maximum number of parallel jobs.

■ SchedulerProperties 0 none
1 disable activity
2 verbose mode
3 apply maximum simultaneous job limitation
4 generates an alarm if the maximum number of jobs is
reached

■ SchedulerTimeoutSchJobs Specifies the duration (in seconds) of the timeout after
which a scheduled job not started becomes aborted. The
default value is 3600 seconds.

■ SchedulerTriggerAlarm Sets off an alarm if the scheduler is disabled.
1 the alarm is on
0 the alarm is off

Attributes Actions Type
SchedulerAlarmUnit - - - - set get (int)

SchedulerAlarmValue - - - - set get (int)

SchedulerHolidays - - - - set get (string list)

SchedulerMaxNbJobs - - - - set get (int)

SchedulerProperties - - - - set get (int)

SchedulerTimeoutSchJObs - - - - set get (int)

SchedulerTriggerAlarm - - - - set get (int)

SchedulerWeekHoliday - - - - set get (int)

98 Time Navigator Shell Scripting
■ SchedulerWeekHoliday Specifies the non-working days of the week.
0No Week Holiday
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday
or any combination of these in a mask

Chapter 4 Objects and their Attributes 99
ScheduleRule Object

The ScheduleRule object represents a scheduling rule in Time Navigator.

Attributes Actions Type
ScheduleRuleFreqMonths - - create set get (int)

ScheduleRuleFreqMthsDaysVal - - create set get (int)

ScheduleRuleFreqMthsDayType - - create set get (int)

ScheduleRuleFreqMthsWeekDay - - create set get (int)

ScheduleRuleFreqWeeksDays - - create set get (int)

ScheduleRuleDaysOffset - - create set get (int)

ScheduleRuleDescription - - create set get (string)

ScheduleRuleDescriptionUtf8 - - create set get (string)

ScheduleRuleFreqDays - - create set get (int)

ScheduleRuleFreqDaysNDays - - create set get (int)

ScheduleRuleFreqDaysNDayVal - - create set get (int)

ScheduleRuleFreqDaysOneDay - - create set get (int)

ScheduleRuleFreqDaysOneDayVal - - create set get (string)

ScheduleRuleFreqMthsNMthsVal - - create set get (int)

ScheduleRuleFreqMthsNthDayVal - - create set get (int)

ScheduleRuleFrequency - - create set get (int)

ScheduleRuleFreqWeeksNWksVal - - create set get (int)

ScheduleRuleFreqYear - - create set get (int)

ScheduleRuleFreqYearDaysVal - - create set get (int)

ScheduleRuleFreqYearDayType - - create set get (int)

ScheduleRuleFreqYearMthsVal - - create set get (int)

ScheduleRuleFreqYearNthDay - - create set get (int)

ScheduleRuleFreqYearWeekDay - - create set get (int)

ScheduleRuleFreqYearWeekVal - - create set get (int)

ScheduleRuleId open - - - - get (int)

ScheduleRuleName - - create set get (string)

ScheduleRuleNameUtf8 - - create set get (string)

ScheduleRulePhaseJobAction - - create set get (int)

ScheduleRulePhaseTimeEnd - - create set get (string)

ScheduleRulePhaseTimeStart - - create set get (string)

ScheduleRuleProperties - - create set get (int)

ScheduleRuleSchedule - - create - - get (handle)

ScheduleRuleTime - - create set get (int list)

ScheduleRuleValidityEndDate - - create set get (string)

ScheduleRuleValidityStartDate - - create set get (string)

100 Time Navigator Shell Scripting
Attributes

■ ScheduleRuleDaysOffset Specifies an offset for a day.
The value can be positive or negative (from -7 to
+7).

■ ScheduleRuleDescription Specifies the description associated with the
schedule rule.
If nothing is set at creation, a description
is automatically generated according to the content.

■ ScheduleRuleDescriptionUtf8 Specifies the description associated with
the schedule rule in UTF-8 format.
If nothing is set at creation, a description
is automatically generated according to the content.

■ ScheduleRuleFrequency Specifies the type of schedule.
The following options (defines??) are available:
1: day-based frequency
2: week-based frequency
3: month-based frequency
4: year-based frequency

Attributes to retrieve or set depend on the option.
All these options are explained in the
following sections.

■ ScheduleRuleId Specifies the Id that identifies the schedule rule.

■ ScheduleRuleName Specifies the name of the schedule rule.
The name is mandatory in
creation and unique in the schedule.

Note: there can be several schedule rules with the
same name in a specific catalog.

■ ScheduleRuleNameUtf8 Specifies the name of the schedule rule in
UTF8 format.
The name is mandatory in
creation and unique in the schedule.

■ ScheduleRulePhaseJobAction Specifies the rule phase job action.
1: abort job if out of interval
2: let the job continue if out of interval
3: let the job continue if out of interval and sets off
an alarm

Chapter 4 Objects and their Attributes 101
■ ScheduleRulePhaseTimeEnd Specifies the rule phase end time.

■ ScheduleRulePhaseTimeStart Specifies the rule phase start time.

■ ScheduleRuleProperties Specifies the property of the schedule rule. Takes
one of the following values:
1: time slot-based schedule rule
2: hour-based schedule rule
4: exclusion-based schedule rule

■ ScheduleRuleSchedule Specifies the schedule handle to which the schedule
rule is attached.

■ ScheduleRuleTime Specifies rule time selections.
The following defines are available:
1 :00 minutes
2 :05 minutes
4 :10 minutes
8 :15 minutes
16 :20 minutes
32 :25 minutes
64 :30 minutes
128 :35 minutes
256 :40 minutes
512 :45 minutes
1024 :50 minutes
2048 :55 minutes
To gather several time several time selections,
assemble these defines into a mask (with a slash |).

■ ScheduleRuleValidityEndDate Specifies the end date of schedule rule validity.

■ ScheduleRuleValidityStartDate Specifies the start date of schedule rule validity.

Setting the rule frequency

To set the type of frequency of the scheduling rule, set the attribute Sched-
uleRuleFrequency to one of its four possible values:

■ 1: day-based frequency

■ 2: week-based frequency

■ 3: month-based frequency
In this case, precise the scheduling rule by setting the attribute
SheduleRuleFreqMonths to one of its three possible values:

102 Time Navigator Shell Scripting
■ 1: month defined day by day

■ 2: month defined week by week

■ 3: month defined in a cycle

■ 4: year-based frequency
In this case, precise the scheduling rule by setting the attribute
ScheduleRuleFreqYear to one of its three possible values:

■ 1: year defined day by day

■ 2: year defined week by week

■ 3: year defined in a cycle

Day-based Frequency

The following attributes are usable only if ScheduleRuleFrequency is set to 1:

Attribute Comment

ScheduleRuleFreqDays Specifies the days the schedule rules
apply to.
The following options?? are available:
1

2
3
4

Specifies every N days.
The value is set by the attribute:
ScheduleRuleFreqDaysNDayVal

Specifies all working days.
Specifies all holidays.
Specifies a specific day.
The value is set by the attribute:
ScheduleRuleFreqDaysOneDayVal
The form must be yyyy-mm-dd.

Attribute Comment

ScheduleRuleFreqDaysNDayVal usable ony if ScheduleRuleFreqDays is set to 1

ScheduleRuleFreqDaysOneDayVal usable ony if ScheduleRuleFreqDays is set to 4

Chapter 4 Objects and their Attributes 103
Week-based Frequency

The following attributes are usable only if ScheduleRuleFrequency is set to 2:

Month-based Frequency

The following attributes are usable only if ScheduleRuleFrequency is set to 3:

Month defined day by day

The following attribute is usable only if ScheduleRuleFreqMonths
is set to 1 and ScheduleRuleFrequency is set to 3.

Attribute Comment

ScheduleRuleFreqWeeksDays Specifies one or several days of the week:
1: Sunday
2: Monday
4: Tuesday
8: Wednesday
16: Thursday
32: Friday
64: Saturday

To gather several days, assemble them into a mask (with a slash |) .
For example: (1|64)

ScheduleRuleFreqWeeksNWksVal Specifies every N weeks.

Attribute Comment

ScheduleRuleFreqMonths Specifies the frequency in months:
1: month defined day by day
2: month defined week by week
3: month defined in a cycle

ScheduleRuleFreqMthsNMthsVal Specifies every N months.

104 Time Navigator Shell Scripting
Attribute Comment

ScheduleRuleFreqMthsDaysVal Specifies one or several days in a month:

1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
-2147483648

Day 01
Day 02
Day 03
Day 04
Day 05
Day 06
Day 07
Day 08
Day 09
Day 10
Day 11
Day 12
Day 13
Day 14
Day 15
Day 16
Day 17
Day 18
Day 19
Day 20
Day 21
Day 22
Day 23
Day 24
Day 25
Day 26
Day 27
Day 28
Day 29
Day 30
Day 31
Last day

To gather several days, assemble them into a
mask (with a slash |) .
For example: (1|16384)

Chapter 4 Objects and their Attributes 105
Month Defined Week by Week

The following attributes are usable only if ScheduleRuleFreq-
Months is set to 2 and ScheduleRuleFrequency is set to 3:

Attribute Comment

ScheduleRuleFreqMthsWeekDay Specifies one or several days of the week:
1: Sunday
2: Monday
4: Tuesday
8: Wednesday
16: Thursday
32: Fridday
64: Saturday

To gather several days, assemble them into a mask (with a
slash |).
For example: (1|64)

ScheduleRuleFreqMthsWeekVal Specifies one or several weeks in the month:
1: first week
2: second week
4: third week
8: fourth week
16: last week

To gather several weeks, assemble them into a mask (with a
slash |) .
For example: (1|2)

106 Time Navigator Shell Scripting
Month Defined in a Cycle

The following attributes are usable only if ScheduleRuleFreq-
Months is set to 3 and ScheduleRuleFrequency is set to 3:

Year-based frequency

The following attributes are usable only if ScheduleRuleFrequency is set to 4:

Year Defined Day by Day
The following attribute is usable only if ScheduleRuleFreqYear is set to 1.

Attribute Comment

ScheduleRuleFreqMthsDayType Specifies the type of day:
1: standard day
2: working day
3: holiday

ScheduleRuleFreqMthsNthDayVal Specifies the Nth day of the month (1 to 31).

Attribute Comment

ScheduleRuleFreqYear Specifies the frequency in years:
1: year defined day by day
2: year defined week by week
3: year defined in a cycle

ScheduleRuleFreqYearMthsVal Specifies one or several months:
1: January
2: February
4: March
8; April
16: May
32: June
64: August
128: September
256: October
512: November
1024: December

To gather several months, assemble them into a mask (with a slash |) .

Chapter 4 Objects and their Attributes 107
Attribute Comment

ScheduleRuleFreqYearDaysVal Specifies one or several days in a month:

1
2
4
8
16
32
64
128
256
512
1024
2048
4096
8192
16384
32768
65536
131072
262144
524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
-2147483648

Day 01
Day 02
Day 03
Day 04
Day 05
Day 06
Day 07
Day 08
Day 09
Day 10
Day 11
Day 12
Day 13
Day 14
Day 15
Day 16
Day 17
Day 18
Day 19
Day 20
Day 21
Day 22
Day 23
Day 24
Day 25
Day 26
Day 27
Day 28
Day 29
Day 30
Day 31
Last day

To gather several days, assemble them into a
mask (with a slash |) .
For example: (1|16384)

108 Time Navigator Shell Scripting
Year Defined Week by Week
The following attributes are usable only if ScheduleRuleFreqYear is set to 2.

Year Defined in a Cycle
The following attributes are usable only if ScheduleRuleFreqYear is set to 3.

ScheduleRuleFreqYearWeekDay Specifies one or several days of the week:
1: Sunday
2: Monday
4: Tuesday
8: Wednesday
16: Thursday
32: Fridday
64: Saturday

To gather several days, assemble them into a mask (with a
slash |).
For example: (1|64)

ScheduleRuleFreqYearWeekVal Specifies one or several weeks in the month:
1: first week
2: second week
4: third week
8: fourth week
16: last week

To gather several weeks, assemble them into a mask (with a
slash |) .
For example: (1|2)

Attribute Comment

ScheduleRuleFreqYearDayType Specifies the type of day:
1: standard day
2: working day
3: holiday

SchedSchedScheduleRuleFreqYearNthDayVal Specifies the Nth day of the month (1 to 31).

Chapter 4 Objects and their Attributes 109
Snapshot Object

The snapshot object describes a snapshot. Listing the snapshots returns their handles.

Attributes

■ SnapShotFolderName Handle of the backup folder containing the snapshot
information.

■ SnapShotName Name of the snapshot.

■ SnapShotNameUtf8 Name of the snapshot in UTF-8 format.

■ SnapShotSnapMountPoint Mount point of the snapshot.

■ SnapShotSnapMountPointUtf8 Mount point of the snapshot in UTF-8 format.

■ SnapShotSnapName Physical name of the snapshot in UTF-8 format.

■ SnapShotSnapNameUtf8 Physical name of the snapshot.

■ SnapShotStrategyName 1 strategy A
2 strategy B
3 strategy C
4 strategy D

■ SnapShotType 1 snapshots using VSS technology
2 snapshots using NDMP technology
3 snapshots using Snapvault technology
4 snapshots using Engenio technology

■ SnapShotVolumeMountPoint Mount point of the snapshotted volume.

■ SnapShotVolumeMountPointUtf8 Mount point of the snapshotted volume in UTF-8 format.

Attributes Actions Type
SnapShotFolderName - - - - - - get (string)

SnapShotName - - - - - - get (string)

SnapShotNameUtf8 - - - - - - get (string)

SnapShotSnapMountPoint - - - - - - get (string)

SnapShotSnapMountPointUtf8 - - - - - - get (string)

SnapShotSnapName - - - - - - get (string)

SnapShotSnapNameUtf8 - - - - - - get (string)

SnapShotStrategyName - - - - - - get (int)

SnapShotType - - - - - - get (int)

SnapShotVolumeMountPoint - - - - - - get (string)

SnapShotVolumeMountPointUtf8 - - - - - - get (string)

SnapShotVolumeName - - - - - - get (string)

SnapShotVolumeNameUtf8 - - - - - - get (string)

110 Time Navigator Shell Scripting
■ SnapShotVolumeName Mount point of the snapshotted volume in UTF-8 format.

■ SnapShotVolumeNameUtf8 Mount point of the snapshotted volume.

Chapter 4 Objects and their Attributes 111
Archive Related Objects

Folder Object

The Folder object represents a folder, identified by the name and the type:

■ Backup folder: a backup folder is associated to a host (Host) or an application
(Application), themselves associated with a group of platforms (HostGroup). It is at
the group of platforms level that the strategy and the associated cartridge pools are
defined, as well as the backup classes. The backup file can be opened using its name or
the associated object, Host or Application. It is automatically created with the
creation of the Host object.

■ Archive folder (central or local): an archive folder does not contain links to the archive
contents. The only way to know which files are contained is to list all the files of the
Time Navigator catalog. Then test the equality between the name of the selected archive
folder and the one it seeks

The central archive has a direct link with the cartridge pools to be used.
The local archives have a link to cartridge pools via the user. It is identified
by its name.

Attributes Actions Type
FolderAccessGroup - - create set get (handle list)

FolderApplication open - - - - get (handle)

FolderArchive - - - - - - get (handle list)

FolderContErrMultWriting - - create set get (int)

FolderCreateNewArchive - - create set get (int)

FolderDateArchive - - - - get (int)

FolderDateCreate - - - - - - get (int)

FolderDateExtract - - - - - - get (int)

FolderDateModif - - - - - - get (int)

FolderDeleteArchive - - create set get (int)

FolderEpilog - - create set get (string)

FolderFormatCart - - create set get (int)

FolderFormatFile - - create set get (int)

FolderHost open - - - - get (handle)

FolderJobPriority - - create set get (int)

FolderKeyWord - - create set get (string list)

FolderKeyWordMandatory - - create set get (int)

FolderKeyWordPropagate - - - - set - - (int)

FolderLanFree - - create set get (int)

FolderLibelle - - create set get (string)

FolderManageACL - - create set get (int)

112 Time Navigator Shell Scripting
Attributes

■ FolderAccessGroup List of handles of cartridge pool type access group
associatedwith folder. Only valid for a central archiving
type folder (FolderType = 3).

■ FolderApplication Handle associated application, for a backup folder
(FolderType = 1).

■ FolderArchive List of handles of the archives contained in the archive
folder.
Only valid for a local or central archiving type folder
(FolderType = 2 or 3).

■ FolderContErrMultWriting Specifies if an archiving session must continue if
one of the multiple writing sessions fails.
0 Archiving does not continue.
1 Archiving continues.

■ FolderCreateNewArchive Archiving in a empty archive:
0 No
1 Yes

■ FolderDateArchive Last archive date of folder.

■ FolderDateCreate Creation date of folder.

■ FolderDateExtract Last restore date of folder.

FolderMultiplexable - - create set get (int)

FolderName open create set get (string)

FolderOSGroup - - create set get (string)

FolderOSGroupUtf8 - - create set get (string)

FolderOSGroupId - - create set get (int)

FolderOsType - - - - - - get (int)

FolderOSUser - - create set get (string)

FolderOSUserUtf8 - - create set get (string)

FolderOSUserId - - create set get (int)

FolderPermission - - create set get (int)

FolderPNbFiles - - create set get (string)

FolderProlog - - create set get (string)

FolderPSize - - create set get (string)

FolderSynchro - - create set get (int)

FolderThroughLink - - create set get (int)

FolderType - - create - - get (int)

Attributes Actions Type

Chapter 4 Objects and their Attributes 113
■ FolderDateModif Modification date of folder.

■ FolderDeleteArchive Deletion of archived files:
0 No (by default)
1 Yes

■ FolderEpilog Ends processing command.

■ FolderFormatCart Format of data writing:
1 tar
2 cpio
4 TiNa
5 fastrax
6 sidf
7 Unknown

■ FolderFormatFile File format, true only if the data writing format is
TiNa (FolderFormatCart = 4):
1 Encoded
2 Compressed
3 Encoded and compressed

■ FolderHost Handle of associated host, for a backup folder
(FolderType = 1).

■ FolderJobPriority Specifies the priority level of jobs associated with the
archive folder.
1 Very low job priority
2 Low job priority
3 Medium job priority
4 High job priority
5 Very high job priority

■ FolderKeyWord List of keywords.

■ FolderKeyWordMandatory Mandatory keyword list.

■ FolderKeyWordPropagate Keyword list propagation.

■ FolderLanFree Specifies if the LAN-free archiving mode is enabled.
0 Disabled (default).
1 Enabled.
Must not be used if multiple writing is performed.

■ FolderLibelle Folder description.

114 Time Navigator Shell Scripting
■ FolderManageACL Archives the Access Control Lists (ACL)
0 No
1 Yes

■ FolderMultiplexable Archives in multiplexing mode.
Only valid for a local or central archiving type folder
(FolderType = 2 or 3).
0 No
1 Yes

■ FolderName Unique name of folder, whatever the type.

■ FolderOSGroup Name of group to which the owner user belongs.
Only valid for a local or central archiving type folder
(FolderType = 2 or 3).

■ FolderOSGroupUtf8 Name of group to which the owner user belongs in Utf8.
Only valid for a local or central archiving type folder
(FolderType = 2 or 3).

■ FolderOSGroupId ID of group to which the owner user belongs.

■ FolderOSType Returns an integer corresponding to the OS on which the
folder was created:
1 Netware
2 Unix
3 VMS
4 Win3
5 Win32
6 MacOS
7 OS2

■ FolderOSUser Name of owner user. Only valid for a local or central
archiving type folder. (FolderType = 2 or 3).

■ FolderOSUserUtf8 Name of owner user in Utf8. Only valid for a local or
central archiving type folder. (FolderType = 2 or 3).

■ FolderOSUserId ID of owner user.

■ FolderPermission Access rights of folder:
1 Owner read permission
2 Owner write permission
4 Group read permission
8 Group write permission
16 Everyone read permission
32 Everyone write permission
7 Values of the default access rights

Chapter 4 Objects and their Attributes 115
Note The default values of the access rights correspond to the owner’s read permission
and the group, and for the write permission to the owner’s permission only.

■ FolderPNbFiles Specifies the number of protected files in an archive
folder.

■ FolderProlog Starts processing command.

■ FolderPSize Folder size.

■ FolderSynchro Synchronization of write cartridges:
0 No (by default)
1 Yes

■ FolderThroughLink Cross symbolic links:
0 No (by default)
1 Yes

■ FolderType Type of folder:
1 Backup
2 Local archive
3 Central archive

Specific Cases

■ FolderHost Mandatory on opening for a backup folder type
(FolderType = 1).

■ FolderName Mandatory on creation and opening for a local or central
archiving type folder (FolderType = 2 or 3).

■ FolderAccessGroup Mandatory on creation for a central archiving type folder
(FolderType = 3).

116 Time Navigator Shell Scripting
Archive Object

The Archive object represents an archive within an archive folder. An archive is
identified by the folder name it belongs to, completed by its access path within this folder.

The access path is always defined in relation to the root of the folder. Its syntax is
standard: /Archive1/Arc1 represents sub-archive Arc1 archive Archive1 in the
associated archive folder.

Attributes

■ ArchiveDateArchive Date of last archiving of the last archive.

■ ArchiveDateCreate Archive creation date.

■ ArchiveDateExtract Date of last restore of the archive.

■ ArchiveDateModif Archive modification date.

■ ArchiveFolder Handle of the folder to which the archive belongs.

Note This folder contains the archive that establishes the link with the cartridge pools,
either directly in the case of central archiving, or with the user name in the case of
a local archive.

■ ArchiveKeyWord List of keywords.

■ ArchiveLibelle Description.

Attributes Actions Type
ArchiveDateArchive - - - - - - get (int)

ArchiveDateCreate - - - - - - get (int)

ArchiveDateExtract - - - - - - get (int)

ArchiveDateModif - - - - - - get (int)

ArchiveFolder - - create - - get (handle)

ArchiveKeyWord - - create set get (string list)

ArchiveLibelle - - create set get (string)

ArchiveName open create set get (string)

ArchiveOSGroup - - create set get (string)

ArchiveOSUser - - create set get (string)

ArchivePermission - - create set get (int)

Chapter 4 Objects and their Attributes 117
■ ArchiveName Absolute access path of archive in folder.

■ ArchiveOSGroup Name of group to which the owner user belongs.

■ ArchiveOSUser Name of owner user.

■ ArchivePermission Access rights of the archive:
1 Owner read permission
2 Owner write permission
4 Group read permission
8 Group write permission
16 Everyone read permission
32 Everyone write permission
7 Values of the default access rights

Note The default values of the access rights correspond to the owner read permission
and the group, and for the write permission for the owner only.

118 Time Navigator Shell Scripting
DFM Archive Object

The Disk File Management (DFM) object is now available. This object has the
following characteristics:

■ no tar or cpio format available

■ no manual archiving via Time Navigator is allowed

■ the psize field cannot be filled

For more information on DFM, contact Atempo Professional Services and ask for the
Time Navigator Disk File Management guide.

119
Appendix

Appendix 1: Conventions

The following conventions are designed to homogenize scripts and increase
readability.

Extension of Script Files

By convention, the names of script files for tina_shell end with ".tsh".

Variables

By convention and to avoid any confusion with the attribute names, the names of
tina_shell variables are written in capital letters, words being separated by the
underscore character '_'.

This applies to all four variables present (by default) when starting tina_shell.

120 Time Navigator Shell Scripting
Appendix 2: List of Commands

Command Description Page

add adds an element to the end of a list 18

assign assigns a value to an attribute 33

close closes an object 37

concat concatenates the value of two variables 16

create creates an object 36

date converts the number of seconds since 01/01/1970 to a date 26

decrement decrements a variable 15

delete deletes a variable of type handle 36

echo displays the value of a variable 14

elif starts a test branch 21

else ends a test branch 21

endfor ends a repeated loop 22

endif ends a test branch 21

envget retrieves the value of an environment variable 24

envput positions an environnement variable 24

erase deletes variables as well as attribute assignments 37

exist tests the existence of an object in the catalog 40

exit quits tina_shell 9

fileget retrieves the content of a text file 25

fileput creates a text file containing the elements of a variable 25

foreach starts a repeated loop 22

get retrieves attribute information 38

help displays on-line help 30

if starts a test branch 21

increment increments a variable 15

input establishes a dialogue between the user and tina_shell 23

Appendix 121
In the following examples, files are used with the command -file file.

■ get_host.tsh

Recovers and displays the names of all the hosts of the application.

■ enable.tsh

Enables all the hosts, applications and drives of the application.

■ change_server_name.tsh

Modifies dynamically the name of the Time Navigator server.

■ job.tsh

Controls the status (abort, suspend, resume, or restart) and the priority (up, down, top,
bottom) of a job.

■ config.tsh

Creates a test configuration.

■ backup.tsh

item counts the elements of a table 18

list generates a list of handles of all the objects of a class 39

mask generates a bit mask from all the integers in a list 19

multiply multiplies the values of two variables 15

open opens an object 37

percent calculates the percentage of the values of two variables

quit quits tina_shell 9

reset table attributes are returned to zero 35

set modifies the information concerning attributes 38

show displays all the variables 13

time places the number of seconds that have passed since 01/01/1970 26

unmask generates an integer list from an integer representing a bit mask 19

variable creates a variable 12

wait stops the program during a number of specified seconds 26

Command Description Page

122 Time Navigator Shell Scripting
Starts a backup.

Appendix 123
Appendix 3: Relations between objects

This table summarizes the relations that links the objects.

■ The Administration Object column lists the objects handled in Administration
Console.

■ The tina_shell Object column indicates, for each administration object, the
corresponding tina_shell objects.

■ The Dependence indicates the objects whose handle is necessary for creating/opening
the tina_shell object.

☞ To make the distinction between the commands create and open, see “On-line Help”,
page 30 and “Objects and their Attributes”, page 43.

■ The Child Objects column lists the different objects of which this object tina_shell
authorises access.

■ The Parent Objects column lists the different objects that allow access to each
tina_shell object.

Example The tina_shell Application object represents the Application object of the
administration. It cannot be created nor opened without the handle of the HostGroup and
Host objects. It allows access to the Alarm objects, HostGroup and Host. One can get
this object via the Folder, HostGroup, Backup and Job objects.

Administration
Object

tina_shell Object Dependence Child Objects Parent Objects

Alarm Alarm Host
Application
Drive
User
AccessGroup
Library
Cartridge

Host
Application
Drive
User
AccessGroup
Library
Cartridge

Application Application HostGroup
Host

Alarm (list)
HostGroup
Host

Folder
HostGroup
Backup
Job

Archive Archive Folder
archive type

Folder
archive type

Catalog Catalog

124 Time Navigator Shell Scripting
Cartridge Cartridge Drive
User
associated to an Access-
Group of cartridge pool
type

Drive
Alarm (list)
User

User
Drive
Library

Backup class BackupClass HostGroup HostGroup HostGroup

Central archive
folder

Folder AccessGroup
cartridge pool type

Local archive
folder

Folder

Backup folder Folder Host or
Application

Platform group HostGroup Host (list)
Application (list)
BackupClass (list)
Strategy (list)

BackupClass

Cartridge pool User AccessGroup
cartridge pool type
Cartridge
Alarm (list)

AccessGroup
cartridge pool type

User
associated to AccessGroup
Alarm (list)
Drive (list)

User
Folder
central archive type
Drive
Strategy

Drive Drive Host Cartridge
AccessGroup
user type (list)
AccessGroup
library type
AccessGroup
cartridge pool type (list)
Alarm (list)
Host
Network
DriveConnection

Cartridge
AccessGroup
library type
AccessGroup
user type (list)
Host
Network
DriveConnection

Library Library Host AccessGroup
library type
Cartridge (list)
Alarm (list)
Host

AccessGroup
library type
Host

AccessGroup
library type

Library
Drive
Alarm (list)

Drive
Library

Administration
Object

tina_shell Object Dependence Child Objects Parent Objects

Appendix 125
Backup Backup Host or
Application

Host or
Application

Host Host HostGroup Drive
Library
Alarm (list)
HostGroup
Host

Application
Folder
HostGroup
Drive
Library
Backup
Host
Job

Strategy Strategy HostGroup AccessGroup
cartridge pool type (list)
HostGroup

HostGroup

Job Job User
Host or
Application

User User Cartridge (liste)
for local archive
Alarm (list)
AccessGroup
of user type

AccessGroup
cartridge pool type (list)
AccessGroup
user type
Job

User group AccessGroup
of user type

User
associated to this AccessGroup
Drive (list)
Alarm (list)

Drive

Network Network Drive (list) Drive

Drive/host
Connection

DriveConnection Host
Drive

Drive

Administration
Object

tina_shell Object Dependence Child Objects Parent Objects

126 Time Navigator Shell Scripting
Appendix 4: Examples of tina_shell Scripts

This appendix provides several examples of commonly used scripts.

Each script is explained by the comment lines in the code (lines starting with #).

Getting and Displaying Host Names

get_host.tsh

#--#
Title : get_host.tsh
Description: Get and display the host name
Use: tina_shell -file get_host.tsh
The above line executes the script
The variables are set and the host handle list
is read and shown.
#--#
variables
variable int INT_SUCCESS 0
variable int INT_ERROR 1
#Get host handle list
list Host in HDL_LIST_HOST
foreach HDL_HOST in HDL_LIST_HOST
 assign HostName &STR_HOST_NAME
 get HDL_HOST
 echo STR_HOST_NAME
endfor
exit SUCCESS

This script typically produces an output similar to the following:

BRAGON
elliot
kucek

Appendix 127
Enabling Hosts, Applications and Drivers

enable.tsh

#--#
Title: enable.tsh
Description: enable the hosts, applications and drives.
Use: tina_shell -file enable.tsh
tina_shell
Variables are defined by type with a value to indicate possible success or error
The host handle list is retrieved through an iterative process (foreach...endfor)
The application handle list is retrieved through an iterative process (foreach...endfor)
The drive handle list is retrieved through an iterative process (foreach...endfor).
#--#
#variables
variable int INT_SUCCESS 0
variable int INT_ERROR 1
#Get host handle list
list Host in HDL_LIST_HOST
foreach HDL_HOST in HDL_LIST_HOST
assign HostEnable TRUE
 set HDL_HOST
endfor
Get application handle list
list Application in HDL_LIST_APPLICATION
foreach HDL_APPLICATION in HDL_LIST_APPLICATION
 assign ApplicationEnable TRUE
 set HDL_APPLICATION
endfor
Get drive handle list
list Drive in HDL_LIST_DRIVE
foreach HDL_DRIVE in HDL_LIST_DRIVE
 assign DriveEnable TRUE
 set HDL_DRIVE
endfor
exit SUCCESS

This script does not produce any output but enables hosts, applications, and drivers.

128 Time Navigator Shell Scripting
Launching a Backup

backup.tsh
#--#
Title: backup.tsh
Description: Backup a host
Use tina_shell -file backup.tsh -host host_name -strat A|B|C|D [-full|-incr]
#tina_shell
Variables are defined by type with a value to indicate possible success or error.
For each argument in ARGV, a test is made
The syntax is verified, through an iterative process (foreach...endfor).
#
#--#
variables
variable int INT_SUCCESS 0
variable int INT_ERROR 1
control ARGV
item ARGV ARGC
if ARGC < 7
 echo Usage : -host host_name -strat A|B|C|D [-full|-incr]
 exit ERROR
endif
read ARGV
variable int INT_I 0
variable string STR_HOST_NAME EMPTY_STRING
variable string STR_STRATEGY_NAME EMPTY_STRING
variable int INT_MODE 1
foreach STR_ARG in ARGV
 # -host
 if STR_ARG == -host
 variable int INT_J INT_I
 increment INT_J 1
 variable string STR_HOST_NAME ARGV[INT_J
 endif
 # -strat
 if STR_ARG == -strat
 variable int INT_J INT_I
 increment INT_J 1
 variable string STR_STRATEGY_NAME ARGV[INT_J
 endif
 # -incr (-full by default)
 if STR_ARG == -incr
 variable int INT_MODE 2
 endif
 increment INT_I 1
endfor
Verify the syntax
if STR_HOST_NAME == EMPTY_STRING
 echo Specify host_name
 echo Usage : -host host_name -strat A|B|C|D [-full|-incr]
 exit ERROR
endif
if STR_STRATEGY_NAME == A
 variable int INT_STRATEGY 1
elif STR_STRATEGY_NAME == B
 variable int INT_STRATEGY 2
elif STR_STRATEGY_NAME == C
 variable int INT_STRATEGY 4
elif STR_STRATEGY_NAME == D
 variable int INT_STRATEGY 8
else
 echo Specify strategy
 echo Usage : -host host_name -strat A|B|C|D [-full|-incr]
 exit ERROR
endif
Open the host
assign HostName STR_HOST_NAME
exist Host INT_EXIST

Appendix 129
if INT_EXIST == FALSE
 echo Host STR_HOST_NAME does not exist
exit ERROR
endif
open Host HDL_HOST
Backup the host
assign BackupPlatformHandle HDL_HOST
assign BackupPlatformClass 1
assign BackupStrategyName INT_STRATEGY
assign BackupMode INT_MODE
create Backup HDL_JOB
close HDL_JOB
exit SUCCESS

This script does not produce any output but launches a backup.

130 Time Navigator Shell Scripting
Getting a Job List and its Characteristics

list_jobs
#---#
Title: list_jobs.tsh
Description: job list
Use: tina_shell -file list_jobs.tsh
tina_shell
The job is retrieved in the handle list through an iterative process (foreach...endfor)
The various dates variables are set and the result is displayed.
#--#
list Job in HDL_LIST_JOB
foreach HDL_JOB in HDL_LIST_JOB
 assign JobId &INT_JOB_ID
 assign JobType &INT_JOB_TYPE
 assign JobStatus &INT_JOB_STATUS
 assign JobDateSubmit &INT_DATE_SUBMIT
 assign JobDateCreate &INT_DATE_CREATE
 assign JobDateRun &INT_DATE_RUN
 assign JobDateEnd &INT_END_DATE
 assign JobStrategyName &INT_STRATEGY_NAME
 assign JobHost &HDL_HOST
 get HDL_JOB
 assign HostName &STR_HOST_NAME
 get HDL_HOST
 date INT_DATE_SUBMIT STR_DATE1
 date INT_DATE_CREATE STR_DATE2
 date INT_DATE_RUN STR_DATE3
 date INT_END_DATE STR_DATE4
 #Display the result
 echo id : INT_JOB_ID platform : STR_HOST_NAME strategy : INT_STRATEGY_NAME type : INT_JOB_TYPE
 status : INT_JOB_STATUS
 echo job : STR_DATE1 creation : STR_DATE2 run : STR_DATE3 end : STR_DATE4
endfor

This script typically produces an output similar to the following:

id : 147 platform : elliot strategy : -1 type : 8
job : Fri Sep 02 12:00:30 2005 creation : Fri Sep 02 12:00:30
2005 run : Fri Sep 02 12:00:32 2005 end : Fri Sep 02 12:00:33 2005
id : 146 platform : elliot strategy : -1 type : 3
job : Fri Sep 02 11:24:20 2005 creation : Fri Sep 02 11:24:20
2005 run : Fri Sep 02 11:24:22 2005 end : Fri Sep 02 11:28:03 2005
id : 145 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:52:45 2005 creation : Fri Sep 02 10:52:45
2005 run : Fri Sep 02 10:52:49 2005 end : Fri Sep 02 10:53:16 2005
id : 144 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:51:36 2005 creation : Fri Sep 02 10:51:36
2005 run : Fri Sep 02 10:51:39 2005 end : Fri Sep 02 10:51:58 2005
id : 143 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:50:46 2005 creation : Fri Sep 02 10:50:46
2005 run : Fri Sep 02 10:50:49 2005 end : Fri Sep 02 10:51:15 2005
id : 142 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:45:09 2005 creation : Fri Sep 02 10:45:09
2005 run : Fri Sep 02 10:45:13 2005 end : Fri Sep 02 10:45:35 2005
id : 141 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:41:51 2005 creation : Fri Sep 02 10:41:52
2005 run : Fri Sep 02 10:41:55 2005 end : Fri Sep 02 10:42:17 2005
id : 140 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:40:57 2005 creation : Fri Sep 02 10:40:57
2005 run : Fri Sep 02 10:41:01 2005 end : Fri Sep 02 10:41:30 2005
id : 139 platform : elliot strategy : -1 type : 4
job : Fri Sep 02 10:39:57 2005 creation : Fri Sep 02 10:39:57
2005 run : Fri Sep 02 10:40:00 2005 end : Fri Sep 02 10:40:07 2005
id : 138 platform : elliot strategy : -1 type : 4

Appendix 131
Getting Catalog Information
Catalog_info.tsh

#---
#Title:catalog_info.tsh -catalog catalog_name [-full] [-out file]
#Description: get catalog information and the cache.
#Use: Display a summary :no parameter (except -catalog)
Displays all info :-full
Backup results of the file :-out file
Arguments are read.
------+-------------------------------------+--
#
Variable initialization
#
variable string STR_USAGE_1 "Usage full information:-catalog catalog -full [-out file
(save result)]"
variable string STR_USAGE_2 "Usage summary : -catalog catalog [-out file (save result)]"
variable int INT_I 0
variable string STR_VERSION "1.1 19/04/2000"
variable int INT_TYPE FALSE
variable string STR_CATALOG EMPTY_STRING
variable string STR_ACTION summary
variable string STR_FILE_OUT EMPTY_STRING
variable stringlist STR_LIST_RESULT " "
#
Read ARGV
#
Variable initialization
Read parameters
foreach STR_ARG in ARGV
 # -full
 if STR_ARG == -full
 variable string STR_ACTION full
 endif
 # -catalog
 if STR_ARG == -catalog
 variable int J INT_I
 increment J 1
 variable string STR_CATALOG ARGV[J
 endif
 # -out
 if STR_ARG == -out
 variable int J INT_I
 increment J 1
 variable string STR_FILE_OUT ARGV[J
 endif
 # -help
 if STR_ARG == -help
 echo USAGE_1
 echo USAGE_2
 exit ERROR
 endif
 increment INT_I 1
endfor
End of drive parameters
Verify the syntax
if STR_CATALOG == EMPTY_STRING
 echo You must specify a catalog
 echo STR_USAGE_1
 echo STR_USAGE_2
 exit ERROR
endif
#
Execute the program
#
assign CatalogName STR_CATALOG
open Catalog HDL_CAT

132 Time Navigator Shell Scripting
assign CatalogVolumeTotal &INT_VOLUME
assign CatalogVolumeFree &INT_VOLUME_FREE
assign CatalogObject &INT_OBJ
assign CatalogInstance &INT_INST
assign CatalogDiskCacheVolumeTotal &INT_DSK_VOL
assign CatalogDiskCacheVolumeFree &INT_DSK_FREE
assign CatalogMemoryCacheVolumeTotal &INT_MEM_VOL
assign CatalogMemoryCacheVolumeFree &INT_MEM_FREE
assign CatalogCacheVolumeRead &INT_CACHE_RD
assign CatalogCacheVolumeWrite &INT_CACHE_WR
get HDL_CAT
#######################
get the information#
if STR_ACTION == full
 #
 # result complete
 #
 variable string STR_INFO "Catalog: "
 concat STR_CATALOG STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "OdbVolume: "
 variable string STR_INFO2 INT_VOLUME
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "OdbFree: "
 variable string STR_INFO2 INT_VOLUME_FREE
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "Object: "
 variable string STR_INFO2 INT_OBJ
 concat STR_INFO2 STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "Instance: "
 variable string STR_INFO2 INT_INST
 concat STR_INFO2 STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "DiskCache: "
 variable string STR_INFO2 INT_DSK_VOL
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "DiskCacheFree: "
 variable string STR_INFO2 INT_DSK_FREE
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "CacheMemory: "
 variable string STR_INFO2 INT_MEM_VOL
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "MemoryFree: "
 variable string STR_INFO2 INT_MEM_FREE
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "CacheRead: "
 variable string STR_INFO2 INT_CACHE_RD
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "CacheWrite: "
 variable string STR_INFO2 INT_CACHE_WR
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
else
 #

Appendix 133
 # Summary
 #
 variable string STR_INFO "Catalog: "
 concat STR_CATALOG STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "OdbVolume: "
 variable string STR_INFO2 INT_VOLUME
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "OdbFree: "
 variable string STR_INFO2 INT_VOLUME_FREE
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "CacheDisk: "
 variable string STR_INFO2 INT_DSK_VOL
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
 variable string STR_INFO "CacheMemory: "
 variable string STR_INFO2 INT_MEM_VOL
 concat STR_INFO2 STR_INFO
 concat " MB" STR_INFO
 add STR_INFO in STR_LIST_RESULT
endif
#################################
File result or "stdout"
#

if STR_FILE_OUT != EMPTY_STRING
 fileput STR_FILE_OUT STR_LIST_RESULT
else
 foreach STR_INFO in STR_LIST_RESULT
 if STR_INFO != " "
 echo STR_INFO
 endif
 endfor
endif

This script typically produces an output similar to the following:

Catalog: test
OdbVolume: 64 MB
OdbFree: 38 MB
CacheDisk: 0 MB
CacheMemory: 64 MB

134 Time Navigator Shell Scripting
Getting a Cartridge List via a Cartridge Pool
##
Name:TinaPool [-h|help] [-v|verbose] [-out file]
Description:References the list of cartridge pools.
Use:
##
Arguments:
##-v|verboseMode verbose
##
##-h|help Display the on-line help.
##
##-out file Record the result in the file
A file is read.
variables
variable int INT_CT 0
variable int INT_FLAG_HELP 0
variable int INT_VERBOSE 0
variable string STR_FILE_OUT EMPTY_STRING
variable string STR_FILE_SHELL EMPTY_STRING
variable stringlist STR_LIST_RESULTAT " "
##
Definitions of the generic functions
##
##
Read a file with beginning and end of line
#
function_begin CatFile INT_DEBUT INT_FIN STR_FILE
 # Reread the file
 fileget STR_FILE STR_LIST_LINES INT_DEBUT INT_FIN
 foreach STR_LINE in STR_LIST_LINES
 echo STR_LINE
 endfor
 if INT_VERBOSE == 1
 echo "Fin affichage fichier"
 endif
function_end
###########################
Argument loop
#
foreach STR_ARGV in ARGV
 # ----------------------------------
 # Results of file name
 if STR_ARGV == "-out"
 variable int INT_CT2 INT_CT
 increment INT_CT2 1
 # Get STR_INFO of STR_FILE_OUT
 variable string STR_FILE_OUT ARGV[INT_CT2
 if INT_VERBOSE == 1
 echo "File Out :" STR_FILE_OUT
 endif
 endif
 # ----------------------------------
 # tina shell file name
 if STR_ARGV == "-file"
 variable int INT_CT2 INT_CT
 increment INT_CT2 1
 # Get STR_INFO of STR_FILE_OUT
 variable string STR_FILE_SHELL ARGV[INT_CT2
 if INT_VERBOSE == 1
 echo "File Shell :" STR_FILE_SHELL
 endif
 endif
 # ----------------------------------
 # Display on-line help
 if STR_ARGV == "-?"
 variable int INT_FLAG_HELP 1
 endif
 # ----------------------------------
 # Display processing of STR_INFO

Appendix 135
 if STR_ARGV == "-v"
 variable int INT_VERBOSE 1
 elif STR_ARGV == "-verbose"
 variable int INT_VERBOSE 1
 endif
 increment INT_CT 1
endfor
-- ON-LINE HELP---
Display on-line help if there is an error
if INT_FLAG_HELP == 1
 if INT_VERBOSE == 1
 echo "Display on-line help:" STR_FILE_SHELL
 endif
 function_execute CatFile 0 14 STR_FILE_SHELL
 if INT_VERBOSE == 1
 echo "Exit script :" INT_VERBOSE
 endif
 exit INT_VERBOSE
endif
###
Main program
Loop of AccessGroup list: point of entry of processing
list AccessGroup in HDL_LIST_ACC_GR
foreach HDL_ACC_GR in HDL_LIST_ACC_GR
 assign AccessGroupType &INT_ACC_GR_TYPE
 assign AccessGroupName &STR_ACC_GR_NAME
 assign AccessGroupDrive &HDL_LISTACC_GR_DRIVES
 get HDL_ACC_GR
 if INT_ACC_GR_TYPE == 3
 if INT_VERBOSE == 1
 echo EMPTY_STRING
 endif
 assign AccessGroupUser &HDL_LIST_ACC_GR_USERS
 assign AccessGroupPolicy &INT_ACC_GR_POLICY
 get HDL_ACC_GR
 item HDL_LIST_ACC_GR_USERS INT_NB_USERS
 if INT_NB_USERS == 1
 if INT_VERBOSE == 1
 echo "get pool and cartridge label"
 endif
 # Get description of pool and cartridge pool
 assign UserName &STR_USER_NAME
 assign UserCartridge &HDL_LIST_USER_CARTRIDGES
 get HDL_LIST_ACC_GR_USERS[0
 variable string STR_INFO "__"
 add STR_INFO in STR_LIST_RESULTAT
 variable string STR_INFO "Pool Name"
 variable string STR_INFO2 " : "
 concat STR_INFO2 STR_INFO
 concat STR_USER_NAME STR_INFO
 add STR_INFO in STR_LIST_RESULTAT
 # ---
 # Loop on drive list associated to the Pool
 if INT_VERBOSE == 1
 echo "get the list of linked tape drive"
 endif
 item HDL_LISTACC_GR_DRIVES nbDrive# Nombre de lecteurs
 variable int INT_CT 0
 if nbDrive == 0
 variable string STR_INFO ">> no linked tape drive"
 add STR_INFO in STR_LIST_RESULTAT
 endif
 foreach leDrive in HDL_LISTACC_GR_DRIVES
 increment INT_CT 1
 assign DriveName &STR_DRIVE_NAME
 get leDrive
 variable string STR_INFO INT_CT
 variable string STR_INFO2 "> "
 concat STR_INFO2 STR_INFO
 concat STR_DRIVE_NAME STR_INFO

136 Time Navigator Shell Scripting
 add STR_INFO in STR_LIST_RESULTAT
 endfor
 # -----------------------------
 # Get the retention
 if INT_ACC_GR_POLICY == 2
 if INT_VERBOSE == 1
 echo "get the pool retention"
 endif
 assign AccessGroupRetUnit &INT_RET_UNIT
 assign AccessGroupRetValue &INT_RET_VALUE
 get HDL_ACC_GR
 if INT_RET_UNIT == 1
 variable int INT_VALUE_FACT 86400
 variable string STR_INFO " Jour(s)"
 elif INT_RET_UNIT == 2
 variable int INT_VALUE_FACT 604800
 variable string STR_INFO " Semaine(s)"
 elif INT_RET_UNIT == 3
 variable int INT_VALUE_FACT 2419200
 variable string STR_INFO " Mois"
 elif INT_RET_UNIT == 4
 variable int INT_VALUE_FACT 125798400
 variable string STR_INFO " Annee(s)"
 else
 variable int INT_VALUE_FACT 0
 variable string STR_INFO EMPTY_STRING
 endif
 variable string info3 " Retention = "
 variable string STR_INFO2 INT_RET_VALUE
 concat STR_INFO2 info3
 concat STR_INFO info3
 add info3 in STR_LIST_RESULTAT
 # Calculate retention in seconds
 variable int RetEnSeconde INT_RET_VALUE
 multiply INT_RET_VALUE INT_VALUE_FACT INT_RESULT
 endif
 # ---
 # Loop the list of Cartridge Pools
 if INT_VERBOSE == 1
 echo "get the catridge pool list"
 endif
 foreach HDL_CART in HDL_LIST_USER_CARTRIDGES
 assign CartridgeDateLastBck &INT_LAST_BACKUP
 assign CartridgeName &STR_CART_NAME
 get HDL_CART
 # Get the current date in seconds
 time INT_CURRENT_DATE
 decrement INT_CURRENT_DATE INT_LAST_BACKUP
 # if INT_CURRENT_DATE < INT_RESULT
 # variable string STR_INFO2 " Recyclable in "
 # else
 # variable string STR_INFO2 " Recyclable since "
 # endif
 variable string STR_INFO " "
 concat STR_CART_NAME STR_INFO
 concat STR_INFO2 STR_INFO
 add STR_INFO in STR_LIST_RESULTAT
 endfor
 endif
 endif
endfor
if INT_VERBOSE == 1
 echo "end of search"
endif
######################
Outputs result
#
if STR_FILE_OUT != EMPTY_STRING
 # Display not necessary in Delete mode
 fileput STR_FILE_OUT STR_LIST_RESULTAT

Appendix 137
 if INT_VERBOSE == 1
 # Reread the created file
 fileget STR_FILE_OUT STR_LIST_INFOS
 foreach STR_INFO in STR_LIST_INFOS
 echo STR_INFO
 endfor
 endif
else
 foreach STR_INFO in STR_LIST_RESULTAT
 if STR_INFO != " "
 echo STR_INFO
 endif
 endfor
endif

This script typically produces an output similar to the following:

Pool Name : lost+found
1> diskf1
2> diskf2
__
Pool Name : lab1
1> diskf1
 lab100001>
 lab100002>
 lab100003>
 lab100004>
 lab100005>
__
Pool Name : lab2
1> diskf2
__
Pool Name : spare
1> diskf1
2> diskf2

138 Time Navigator Shell Scripting
Retrieving DumpCartridgeInformation

#--#
Title: .DumpCartridgeInformation.tsh
Description: DumpCartridgeInformation
Use: tina_shell -file DumpCartridgeInformation.tsh
tina_shell
#--#
variable int ct 0
variable int flagHelp 0
variable string fileShellEMPTY_STRING
variable string PoolNameToUse EMPTY_STRING
variable int OnlyRecyclable 0
variable int IncludePartFilledRecyclable 0
variable int NoOtherInformation 0
variable int MinimiseInformation 0
variable int OnlyOnline 0
variable int Debug 0
variable int IncludeVolume 1 # 1 mean yes, 2 mean yes, in GB
variable int IncludeNbFile 1
variable int IncludeCartridgeType 1
variable int IncludeCartridgeFormat 1
variable int MultiPlyBy100 100
variable int OneGB 10240000
var intlist SecondIn 1 86400 604800 2592000 31536000
var stringlist CartridgeLocationArray "Error" "inside mail box" "in library" "in drive" "outside"
var intlist CartridgeInLineArray -1 0 1 1 0
var string TheHeader1 " Cartridge Name - Bar Code - recyclable or Not - Status - Retention status

- "
concat TheHeader1 TheHeader
var string TheHeader2 " VolumeMB - "
concat TheHeader2 TheHeader
var string TheHeader3 " NbTapeFile - "
concat TheHeader3 TheHeader
var string TheHeader4 " LastBackup - "
concat TheHeader4 TheHeader
var string TheHeader5 " CartType - "
concat TheHeader5 TheHeader
var string TheHeader6 " CartFormat - "
concat TheHeader6 TheHeader
var string TheHeader7 " Location"
concat TheHeader7 TheHeader

echo TheHeader
Loop on all AccessGroup
list AccessGroup in TheAccessGroupList
foreach OneAccessGroup in TheAccessGroupList
 assign AccessGroupType &leType
 assign AccessGroupName &ThePoolName
 get OneAccessGroup
if leType == 3
 echo "----------------------"
echo " Pool :" ThePoolName
assign AccessGroupUser &lesUser
assign AccessGroupPolicy &TheRecyclingPolicy
get OneAccessGroup

Retrieve pool label
assign UserName &TheLabel
assign UserCartridge &allCartridge
get lesUser[0
close lesUser[0

Get retention

if TheRecyclingPolicy == 2

Appendix 139
assign AccessGroupRetUnit &RetUnit
assign AccessGroupRetValue &RetValue
get OneAccessGroup
variable int MultiplyFactor SecondIn[RetUnit

Calculate retention in seconds
multiply RetValue MultiplyFactor RetentionInSeconds
 echo ==> Pool retention in second : RetentionInSeconds

Loop on cartridge in pool

foreach theCartridge in allCartridge
assign CartridgeDateLastBck &lastBackup
assign CartridgeName &nameCart
assign CartridgeBarCode &TheBARCODE
assign CartridgeLocation &TheCartridgeLocation
assign CartridgeStatus &STATUS
assign CartridgeFileNb &TheFileNb
assign CartridgeVolume &TheVolume
assign CartridgeType &TheCartType
assign CartridgeFormat &TheCartFormat
get theCartridge

variable string infoCartrideFileNb TheFileNb
variable string infoCartrideVolume TheVolume
variable int TheVolumeGB TheVolume
multiply TheVolume MultiPlyBy100 TheVolume100
percent TheVolume100 OneGB TheVolumeGB
variable string infoCartrideVolumeGB TheVolumeGB
variable string infoCartrideName nameCart
variable string infoCartrideType TheCartType
variable string infoCartrideFormat TheCartFormat
date lastBackup lastBackupAsString
Get the curent date in seconds
time CurrentDate

if lastBackup == 0
 if TheVolume == 0
#if The volume = 0 and The LastBck = 0, we take the LastRecycling
 assign CartridgeDateReused &DateReused
 get theCartridge
 var int lastBackup DateReused
 else
#if The volume != 0 and The LastBck = 0, we are in a strange situation !
to avoid errors, we consider the LastBackupDate = Now !
 assign CartridgeDateReused &DateReused
 get theCartridge
 var int lastBackup CurrentDate
 endif

endif

 variable int UseSince CurrentDate
decrement UseSince lastBackup

variable int ReclyclingDate lastBackup
increment ReclyclingDate RetentionInSeconds

variable int RecyclableIn ReclyclingDate
decrement RecyclableIn CurrentDate

variable int RecyclableSince CurrentDate
decrement RecyclableSince ReclyclingDate

variable int IsRecyclable 2

if STATUS == 1
 variable string infoReclycling " - No - Filling empty - not concern by reclycling"
 variable int IsRecyclable 0
elif STATUS == 2

140 Time Navigator Shell Scripting
 variable string infoReclycling " - No - Partialy filled - not concern by reclycling"

 if IncludePartFilledRecyclable == 0
 variable int IsRecyclable 0
 else
 if UseSince > RetentionInSeconds
 variable string infoReclycling " - Yes - Partialy filled - Recyclable since "
 variable string infoReclycling2 RecyclableSince
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 1
 else
 variable string infoReclycling " - No - Partialy filled - recyclable in "
 variable string infoReclycling2 RecyclableIn
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 0
 endif

 endif
 elif STATUS == 3
 if UseSince > RetentionInSeconds
 variable string infoReclycling " - Yes - Filling full - recyclable since "
 variable string infoReclycling2 RecyclableSince
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclableRecyclable 1
 else
 variable string infoReclycling " - No - Filling full - Recyclable in "
 variable string infoReclycling2 RecyclableIn
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 0
 endif
elif STATUS == 4
 if UseSince > RetentionInSeconds
 variable string infoReclycling " - Yes - Closed on error - Recyclable since "
 variable string infoReclycling2 RecyclableSince
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 1
 else
 variable string infoReclycling " - No - Closed on error - Recyclable in "
 variable string infoReclycling2 RecyclableIn
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 0
 endif
 elif STATUS == 5
if UseSince > RetentionInSeconds
 variable string infoReclycling " - Yes - Closed at initialization - Recyclable since "
 variable string infoReclycling2 RecyclableSince
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 1
 else
 variable string infoReclycling " - No - Closed at initialization - Recyclable in "
 variable string infoReclycling2 RecyclableIn
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 0
 endif

Appendix 141
 elif STATUS == 6
if UseSince > RetentionInSeconds
 variable string infoReclycling " - Yes - Closed by user - Recyclable since "
 variable string infoReclycling2 RecyclableSince
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 1
 else
 variable string infoReclycling " - No - Closed by user - Recyclable in "
 variable string infoReclycling2 RecyclableIn
 variable string infoReclycling3 " seconds"
 concat infoReclycling2 infoReclycling
 concat infoReclycling3 infoReclycling
 variable int IsRecyclable 0
 endif
 elif STATUS == 7
 variable string infoReclycling " - No - Unclose - not concerned by reclycling"
 variable int IsRecyclable 0
 elif STATUS == 8
 variable string infoReclycling " - No - emptied - not concerned by reclycling"
 variable int IsRecyclable 0
 endif

variable string infoLocation CartridgeLocationArray[TheCartridgeLocation

variable int IsOnline CartridgeInLineArray[TheCartridgeLocation
variable string BareCodeInfo " - "
variable string BareCodeInfo2 TheBARCODE
variable string BareCodeInfo3 " "
concat BareCodeInfo2 BareCodeInfo
concat BareCodeInfo3 BareCodeInfo

variable string Message " "
concat infoCartrideName Message
concat BareCodeInfo Message
concat infoReclycling Message
variable string aSpace " - "

concat aSpace Message
concat infoCartrideVolume Message
concat aSpace Message
concat infoCartrideFileNb Message
concat aSpace Message
concat lastBackupAsString Message
concat aSpace Message
concat infoCartrideType Message
concat aSpace Message
concat infoCartrideFormat Message
concat aSpace Message
concat infoLocation Message
 echo Message
 close theCartridge
endfor
else

echo ==> Pool retention is infinite
here we have identify a infinite pool
loop on cartridge in pool

foreach TheCartridge in allCartridge
assign CartridgeDateLastBck &lastBackup
assign CartridgeName &nameCart
assign CartridgeBarCode &TheBARCODE
assign CartridgeLocation &TheCartridgeLocation
assign CartridgeStatus &STATUS
assign CartridgeFileNb &TheFileNb
assign CartridgeVolume &TheVolume
assign CartridgeType &TheCartType
assign CartridgeFormat &TheCartFormat

142 Time Navigator Shell Scripting

get TheCartridge

variable string infoCartrideFileNb TheFileNb
variable string infoCartrideVolume TheVolume
variable int TheVolumeGB TheVolume
multiply TheVolume MultiPlyBy100 TheVolume100
percent TheVolume100 OneGB TheVolumeGB
variable string infoCartrideVolumeGB TheVolumeGB
variable string infoCartrideName nameCart
variable string infoCartrideType TheCartType
variable string infoCartrideFormat TheCartFormat
date lastBackup lastBackupAsString

get the curent date in seconds
time CurrentDate
 var int UseSince CurrentDate
decrement UseSince lastBackup

if STATUS == 1
 variable string infoReclycling " - No - Filling empty - "
elif STATUS == 2
 variable string infoReclycling " - No - Partialy filled - "
 elif STATUS == 3
 if UseSince > RetentionInSeconds
 variable string infoReclycling " - No - Filling full - "
 else
 variable string infoReclycling " - No - Filling full - "
 endif
elif STATUS == 4
 if UseSince > RetentionInSeconds
 variable string infoReclycling " - No - Closed on error - "
 else
 variable string infoReclycling " - No - Closed on error - "
 endif
 elif STATUS == 5
if UseSince > RetentionInSeconds
 variable string infoReclycling " - No - Closed at initialization - "
 else
 variable string infoReclycling " - No - Closed at initialization - "
 endif
 elif STATUS == 6
if UseSince > RetentionInSeconds
 variable string infoReclycling " - No - Closed by user - "
 else
 variable string infoReclycling " - No - Closed by user - "
 endif
 elif STATUS == 7
 variable string infoReclycling " - No - Unclose - "
 elif STATUS == 8
 variable string infoReclycling " - No - emptied - "
 endif

variable string infoReclycling2 " UseSince "
variable string infoReclycling3 UseSince
variable string infoReclycling4 " seconds"
concat infoReclycling2 infoReclycling
concat infoReclycling3 infoReclycling
concat infoReclycling4 infoReclycling

variable string infoLocation CartridgeLocationArray[TheCartridgeLocation
variable int IsOnline CartridgeInLineArray[TheCartridgeLocation

variable string BareCodeInfo " - "
variable string BareCodeInfo2 TheBARCODE
variable string BareCodeInfo3 " "
concat BareCodeInfo2 BareCodeInfo
concat BareCodeInfo3 BareCodeInfo

variable string Message " "

Appendix 143
concat infoCartrideName Message
concat BareCodeInfo Message
concat infoReclycling Message

variable string aSpace " - "
concat aSpace Message
concat infoCartrideVolume Message
concat aSpace Message
concat infoCartrideFileNb Message

concat aSpace Message
concat lastBackupAsString Message
concat aSpace Message
concat infoCartrideType Message
concat aSpace Message
concat infoCartrideFormat Message
concat aSpace Message
concat infoLocation Message

echo Message
 close TheCartridge
endfor
endif
endif
close OneAccessGroup
endfor
echo "======================"
echo CartridgeFormat
help CartridgeFormat
echo "----------------------"
echo CartridgeType (in fact DriveType)
help DriveType
echo "----------------------"

This script typically produces an output similar to the following:

Cartridge Name - Bar Code - recyclable or Not - Status - Retention

status - VolumeMB - NbTapeFile - LastBackup - CartType - C

on

 Pool : lost+found

==> Pool retention is infinite

 Pool : pool1

==> Pool retention is infinite

 lab100001 - - No - Filling full - UseSince 501004 seconds - 9 - 1 -

Tue Aug 30 14:41:50 2005 - 3 - 3 - outside

 lab100002 - - No - Filling full - UseSince 501004 seconds - 9 - 1 -

Tue Aug 30 14:41:50 2005 - 3 - 3 - outside

 lab100003 - - No - Filling full - UseSince 501004 seconds - 9 - 1 -

Tue Aug 30 14:41:50 2005 - 3 - 3 - outside

 lab100004 - - No - Filling full - UseSince 501004 seconds - 9 - 1 -

Tue Aug 30 14:41:50 2005 - 3 - 3 - outside

144 Time Navigator Shell Scripting
 lab100005 - - No - Filling full - UseSince 496341 seconds - 9 - 2 -

Tue Aug 30 15:59:33 2005 - 3 - 3 - outside

 lab100006 - - No - Filling full - UseSince 496342 seconds - 9 - 1 -

Tue Aug 30 15:59:33 2005 - 3 - 3 - outside

 lab100007 - - No - Filling full - UseSince 496342 seconds - 9 - 1 -

Tue Aug 30 15:59:33 2005 - 3 - 3 - outside

 lab100008 - - No - Filling full - UseSince 496342 seconds - 9 - 1 -

Tue Aug 30 15:59:33 2005 - 3 - 3 - outside

 lab100009 - - No - Filling full - UseSince 496342 seconds - 9 - 1 -

Tue Aug 30 15:59:33 2005 - 3 - 3 - outside

 lab100010 - - No - Filling full - UseSince 253658 seconds - 9 - 3 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100011 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100012 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100013 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100014 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100015 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100016 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100017 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100018 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100019 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100020 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100021 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100022 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Appendix 145
Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100023 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100024 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100025 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100026 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100027 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100028 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100029 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100030 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100031 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100032 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100033 - - No - Filling full - UseSince 253658 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100034 - - No - Filling full - UseSince 253659 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100035 - - No - Filling full - UseSince 253659 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100036 - - No - Filling full - UseSince 253659 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100037 - - No - Filling full - UseSince 253659 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100038 - - No - Filling full - UseSince 253659 seconds - 9 - 1 -

Fri Sep 02 11:24:17 2005 - 3 - 3 - outside

 lab100039 - - No - Partialy filled - UseSince 253659 seconds - 6 - 1

- Fri Sep 02 11:24:17 2005 - 3 - 3 - in drive

146 Time Navigator Shell Scripting

 Pool : pool2

==> Pool retention is infinite

 Pool : spare

==> Pool retention is infinite

======================

CartridgeFormat

 1 : Format tar

 2 : Format cpio

 3 : Format TiNa

 4 : Format None

 5 : Format Fastrax

 6 : Format Sidf

 7 : Format Unknown

CartridgeType (in fact DriveType)

 1 : Type DAT (DAT)

 2 : Type DAT-C (DAT-C)

 3 : Type Disk Drive (Disk Drive)

 4 : Type DLT 2000 (DLT 2000)

 5 : Type DLT 4000 (DLT 4000)

 6 : Type Exabyte 2GB (EXB 2GB)

 7 : Type Exabyte 2GB-C (EXB 2GB-C)

 8 : Type Exabyte 5GB (EXB 5GB)

 9 : Type Exabyte 5GB-C (EXB 5GB-C)

 10 : Type 3480 (3480)

 11 : Type Magneto-Optical (M-Optical)

 12 : Type Mag Tape 6250 (MagTape6250)

 13 : Type Streamer QIC24 (QIC24)

 14 : Type Streamer QIC150 (QIC150)

 15 : Type Streamer QIC525 (QIC525)

 16 : Type CompactTape TK/TZ (TK/TZ)

 18 : Type Overland 3480 (3480)

 19 : Type Exabyte Mammoth (Mammoth)

Appendix 147
 20 : Type DLT 7000 (DLT 7000)

 21 : Type Tandberg SLR32 (SLR32)

 22 : Type Tandberg SLR50 (SLR50)

 23 : Type IBM Magstar MP (Magstar MP)

 24 : Type T9840 (T9840)

 25 : Type IBM 3590 (IBM 3590)

 26 : Type Exabyte Mammoth 2 (Mammoth 2)

 27 : Type AIT (35GB) (AIT)

 28 : Type Exabyte VXA-1 (ECRIX VXA) (VXA-1)

 29 : Type DLT 8000 (DLT 8000)

 30 : Type Tandberg SLR100 (SLR100)

 31 : Type AIT2 (50GB) (AIT-2)

 32 : Type HP Ultrium (HP Ultrium)

 33 : Type IBM Ultrium (IBM Ultrium)

 34 : Type Seagate Ultrium (Seag Ultrium)

 35 : Type T9940 (T9940)

 36 : Type SuperDLT 220 (S-DLT 220)

 37 : Type EMC Tape Emulator (EMC DLU)

 38 : Type DLT1 (DLT1)

 39 : Type Sony DTF2 (Sony DTF2)

 40 : Type Quantum DX30 (Quantum DX30)

 41 : Type AIT3 (100GB) (AIT-3)

 42 : Type Exabyte VXA-2 (VXA-2)

 43 : Type SuperDLT 320 (S-DLT 320)

 44 : Type HP Ultrium 2 (HP LTO2)

 45 : Type IBM Ultrium 2 (IBM LTO2)

 47 : Type SAIT (500GB) (SAIT (500GB))

 48 : Type SuperDLT 600 (S-DLT 600)

 49 : Type Tandberg SLR140 (SLR140)

 50 : Type UDO (UDO)

 51 : Type DLT VS160 (DLT VS160)

 52 : Type Centera (Centera)

 53 : Type HP Ultrium 3 (HP LTO3)

 54 : Type IBM Ultrium 3 (IBM LTO3)

 55 : Type AIT4 (200GB) (AIT-4)

148 Time Navigator Shell Scripting

	Time Navigator Shell Scripting
	Introduction
	Welcome
	The Guide

	Overview
	Introduction
	Application Fields
	API Time Navigator
	Object Classes
	Object Attributes
	Object Operations

	Functional Modes and Starting Up of tina_shell
	Interactive Mode or Shell Mode

	The Programming Mode
	Quitting tina_shell

	tina_shell Language
	Variable Types
	Existing Variables
	General Variable Operations
	Specific Variable Operations
	Type int Variables
	String Type Variables
	List type variables

	Conditional Branches
	Loops
	Other Operations
	Value Entry
	Access to Environment Variables
	Access to files
	Time Commands

	Functions
	Short Mode

	Manipulation of Objects
	Principles
	On-line Help
	Attribute Column
	Action Column
	Type Column

	Accessing Catalog Objects
	Preparation
	Assigning attributes
	Creation and removal of objects
	Opening and Closing Objects
	Reading Attributes
	Modifying Attributes
	Listing Objects for a Class
	Existence test

	Example

	Objects and their Attributes
	Principles
	Platform related Objects
	Host Object
	Application Object
	HostGroup Object

	Device Related Objects
	Drive Object
	DriveConnection Object
	Network Object
	Library Object
	LibraryLocation object
	AccessGroup Object of Library type

	Cartridge Pool Related Objects
	AccessGroup Object of Cartridge Pool Type
	User Object of Cartridge Pool Type

	User Related Objects
	AccessGroup Object of User Type
	User Object of User Type

	Data Related Objects
	Catalog Object
	Cartridge Object
	Job Object
	Alarm Object

	Backup Related Objects
	Strategy Object
	Backup ClassObject
	Backup Object
	Schedule Object
	Scheduler Object
	ScheduleRule Object
	Snapshot Object

	Archive Related Objects
	Folder Object
	Archive Object
	DFM Archive Object

	Appendix
	Appendix 1: Conventions
	Extension of Script Files
	Variables

	Appendix 2: List of Commands
	Appendix 3: Relations between objects
	Appendix 4: Examples of tina_shell Scripts
	Getting and Displaying Host Names
	Enabling Hosts, Applications and Drivers
	Launching a Backup
	Getting a Job List and its Characteristics
	Getting Catalog Information
	Getting a Cartridge List via a Cartridge Pool
	Retrieving DumpCartridgeInformation

