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Abstract

Visual content description is a key issue for machine-based image analysis and understanding.

A good visual descriptor should be both discriminative and computationally efficient while

possessing some properties of robustness to viewpoint changes and lighting condition

variations. In this paper, we propose a new operator called the orthogonal combination of

local binary patterns (denoted as OC-LBP) and six new local descriptors based on OC-LBP

enhanced with color information for image region description. The aim is to increase both

discriminative power and photometric invariance properties of the original LBP operator

while keeping its computational efficiency. The experiments in three different applications

show that the proposed descriptors outperform the popular SIFT, CS-LBP, HOG and SURF,

and achieve comparable or even better performances than the state-of-the-art color SIFT

descriptors. Meanwhile, the proposed descriptors provide complementary information to color

SIFT, because a fusion of these two kinds of descriptors is found to perform clearly better

than either of the two separately. Moreover, the proposed descriptors are about 4 times faster

to compute than color SIFT.
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1. Introduction

Machine-based automatic object recognition and scene classification is one of the most

challenging problems in computer vision. The difficulties are mainly due to intra-class

variations and inter-class similarities. Therefore, a key issue and the first important step when

solving such problems is to generate good visual content descriptions, which should be both

discriminative and computationally efficient, while possessing some properties of robustness

to changes in viewpoint, scale and lighting conditions.

Early work in this domain has mainly utilized global features as image descriptions,

including color histogram [1], color moments [2], edge histogram [3], texture co-occurrence

matrix [4], and so on. These features are extracted directly from the whole image, thus

encoding global visual content of an image. While quite efficient to compute, the downside of

these global features is their great sensitivity to image variations such as background clutter,

occlusion, viewpoint and illumination changes.

For these reasons, global features have gradually given way later on to local image

descriptors. Instead of operating on the whole image, the latter is extracted from local

image regions centered either on some sparse keypoints with certain invariance properties, for

instance with respect to scale and viewpoint change, or simply on a dense sampling grid. The

visual content of an image is then modeled as a Bag-of-Features (BoF) [5] which views an

image as an orderless collection of these local descriptors. An image can thus be described

by a histogram, using hard or soft assignment over a visual vocabulary of fixed size learnt

from a training dataset. Nowadays,the BoF approach built on local image descriptors has

become the dominant approach in the field of visual object recognition and has demonstrated

its effectiveness in various famous challenges, e.g., PASCAL VOC [6] and ImageCLEF [7].

Many different local image descriptors have been proposed in the literature, and the most

famous one is SIFT [8], which is a 3D histogram of gradient locations and orientations. The

location is quantized into a 4 × 4 location grid and the gradient angle is quantized into

8 orientations, resulting in a 128-dimensional descriptor. The contributions to the gradient

orientations are weighted by the gradient magnitudes and a Gaussian window overlaid over the

region, thereby emphasizing the gradients near the region center. Other popular and widely

used local descriptors include PCA-SIFT [9], GLOH [10], SURF [11], HOG [12], DAISY [13],
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Rank-SIFT [14], BRIEF [15], ORB [16], LIOP [17], MROGH [18], and so on. Most of them

are related to SIFT, and can be considered as an extension or refinement of the original SIFT.

Several comprehensive studies [10, 19, 20] have highlighted the interest of local image

descriptors in tasks as diverse as image region matching, texture classification, object

recognition and scene classification. Among them, SIFT proves to be the most powerful

and successful, and has been widely applied as the dominant feature in the state-of-the-art

recognition / classification systems [6]. Moreover, since the original SIFT is an intensity based

descriptor, several color SIFT descriptors have been proposed [21, 22, 23, 24] to capture

color information and further enhance its discriminative power. In [25], Van de Sande et

al. evaluated different color descriptors in a structured way, and recommended to use color

SIFT descriptors for object and scene recognition because they outperform the original SIFT.

However, the downside of color SIFT descriptors is their high computational cost, especially

when the size of image or the scale of dataset significantly increases. Therefore, it is highly

desirable that local image descriptors offer both high discriminative power and computational

efficiency.

The local binary pattern (LBP) operator [26] is a well known texture feature which has

been successfully applied to many applications, e.g., texture classification [27, 28, 29], texture

segmentation [30], face recognition [31, 32], and facial expression recognition [33, 34]. The

LBP operator has several interesting properties. First of all, it is simple and fast to compute.

Moreover, it offers strong discriminative power for the description of texture structure while

staying robust to monotonic lighting changes. All these advantages make LBP a good

candidate for describing local image regions. However, the LBP operator tends to produce

high dimensional feature vectors, especially when the number of considered neighboring pixels

increases. The so-called “curse of dimensionality” is a barrier for using it directly as a local

region descriptor. Thus, a key issue of making LBP a local region descriptor is to reduce its

dimensionality. There exist in the literature two main works, namely “uniform patterns” [27]

and center-symmetric local binary pattern (CS-LBP) operator [35], which address this issue.

In this paper, we propose a novel effective dimensionality reduction method for LBP,

denoted as the orthogonal combination of local binary patterns (OC-LBP), while keeping

high discriminative power of the original LBP in capturing local texture patterns. The

basic idea is to first split the neighboring pixels of the original LBP operator into several
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non-overlapped orthogonal groups, then compute the LBP code separately for each group,

and finally concatenate them together. The experimental results on a standard texture

classification dataset show that our method is much more effective than both CS-LBP operator

and “uniform patterns” in terms of dimensionality reduction, since our method produces the

LBP features with the smallest dimensions while still keeping high classification accuracy.

The proposed OC-LBP operator is then adopted to build a distribution-based local image

region descriptor, denoted as OC-LBP descriptor, by following a way similar to SIFT: given

several local regions of an image, each region is first divided into small cells for spatial

information; in each cell, the OC-LBP feature is then computed for each pixel and an LBP

histogram is constructed; finally, all the histograms from the cells are concatenated and

delivered as the final region descriptor. Our aim is to build a more efficient local descriptor

by replacing the costly gradient information with local texture patterns in the SIFT scheme.

It can be noticed that almost all the LBP related descriptors are intensity-based. However,

color plays an important role for distinguishing objects and scenes, especially in natural scenes.

Meanwhile, there can be various changes in lighting and viewing conditions in real-world

scenes, leading to large variations of objects’ appearances, thereby further complicating the

task of object and scene recognition. Therefore, similar to the extension of SIFT to color

SIFT, we further extend the OC-LBP descriptor to different color spaces and propose six

color OC-LBP descriptors in this paper to increase the photometric invariance properties and

enhance the discriminative power of the intensity-based descriptor. In [36], we have proposed

several color LBP features, which are based on the original LBP operator and serve as global

features. Different from them, the proposed color OC-LBP descriptors in this paper are based

on the orthogonal combination of the LBP operator, and serve as local features. They could

thus be considered as the extensions of our previous work [36]. The experimental results

in three different applications show that the proposed descriptors outperform the popular

SIFT and CS-LBP descriptor, and achieve comparable or even better performances than

the state-of-the-art color SIFT descriptors. Meanwhile, the proposed descriptors provide

complementary information to SIFT, because a fusion of these two kinds of descriptors is

found to perform clearly better than either of the two separately. Moreover, the proposed

descriptors are more computationally efficient than color SIFT.

The main contributions of this paper are summarized as follows.
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(1) We propose a new operator called the orthogonal combination of local binary patterns

(denoted as OC-LBP) to reduce the dimensionality of the original LBP operator so that it is

feasible to be utilized for image region description.

(2) Based on the proposed OC-LBP operator, we build a new local image region descriptor,

denoted as OC-LBP descriptor, with high computational efficiency.

(3) We propose six new color OC-LBP descriptors by extending gray OC-LBP descriptor

to different color spaces in order to increase the photometric invariance properties and enhance

the discriminative power.

The remaining sections are organized as follows. Section 2 introduces the proposed

orthogonal combination of local binary patterns (OC-LBP) in detail, and compares it with

other two popular LBP dimensionality reduction methods: “uniform patterns” and CS-LBP

operator. The construction of the OC-LBP descriptor for local image regions is described

in section 3. We then give details of the proposed color OC-LBP descriptors in section 4,

including illumination change modeling and invariance property analysis for each descriptor.

Section 5 presents the experimental evaluation of the proposed descriptors in three different

applications. Finally, we conclude the paper in section 6.

2. Dimensionality reduction of LBP

2.1. Original LBP operator

The original LBP operator can be seen as a unified approach to statistical and structural

texture analysis. The histogram of the binary patterns computed over a region is generally

used for texture description. The LBP operator describes each pixel by the relative gray levels

of its neighboring pixels. Fig. 1 illustrates the calculation of the LBP code for one pixel with

8 neighbors. Precisely, for each neighboring pixel, the result will be set to one if its value is no

less than the value of the central pixel, otherwise the result will be set to zero. The LBP code

of the central pixel is then obtained by multiplying the results with weights given by powers

of two, and summing them up together. Formally, the LBP code of the pixel at (xc, yc) is
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calculated as:

LBPP,R(xc, yc) =
P−1
∑

p=0

S(gp − gc)× 2p (1)

S(x) =

{

1 x ≥ 0

0 x < 0
(2)

where gc is the value of the central pixel, gp corresponds to the gray values of the P neighboring

pixels equally located on a circle of radius R.

5 3 36 

8 12 25 

1 15 10 

0 0 1 

0 1 

0 1 0 

25 26 27 

24 20 

23 22 21 

0 0 128 

0 1 

0 4 0 

Threshold 

Gray image 

3 3 neighborhood 

Thresholded 

neighborhood 

Weighting LBP = 1+4+128 

= 133 

Multiply 

Figure 1: Calculation of the original LBP code

The final LBP feature of an image is generally distribution-based and consists of computing

the LBP code for each pixel within the image and building a histogram based on these codes.

It can be noticed that the LBP feature is very fast to calculate, and is invariant to monotonic

illumination changes. Thus it is a good candidate for local image region description.

However, the drawback of the LBP feature lies in the high dimensionality of histograms

produced by the LBP codes. Let P be the total number of neighboring pixels, then the LBP

feature will have 2P distinct values, resulting in a 2P -dimensional histogram. For example, the

size of the LBP histogram will be 256 (65536, respectively) if 8 (16, respectively) neighboring

pixels are considered. It will rapidly increase to a huge number if more neighboring pixels

are taken into consideration. Thus, a dimensionality reduction method for LBP is needed to

address this problem.

2.2. Orthogonal combination of local binary patterns (OC-LBP)

To reduce the dimensionality of the LBP histogram, a straightforward way is to only

consider fewer neighboring pixels. For example, the LBP operator with 8 neighbors is mostly
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used in the applications, and it produces a rather long (256-dimensional) histogram, see the

left column of Fig. 2 for an illustration. The size of the LBP histogram will significantly

reduce to 16 if only 4 neighboring pixels are taken into account, as illustrated in the middle

column of Fig. 2. However, this brut reduction also decreases the discriminative power of

the LBP feature because compared to 8 neighbors, only horizontal and vertical neighbors are

considered, and the information of diagonal neighborhood is discarded. We need to find out

a tradeoff between the reduction of the LBP histogram dimensionality and its descriptive

power.

In this paper, we propose an orthogonal combination of local binary patterns, namely

OC-LBP, which drastically reduces the dimensionality of the original LBP histogram while

keeping its discriminative power. Specifically, given P neighboring pixels equally located on a

circle of radius R around a central pixel c, OC-LBP is obtained by combining the histograms of

[P/4] different 4-orthogonal-neighbor operators, each of which consists of turning the previous

4 orthogonal neighbors by one position in a clockwise direction. The dimension of an OC-LBP

based histogram is thus 24 × [P/4] or simply 4 × P , which is linear with the number of

neighboring pixels in comparison to 2P for the original LBP-based scheme.

Fig. 2 illustrates the construction process of an OC-LBP operator with 8 neighboring

pixels. In this case, two regular 4-neighbor LBP operators are considered. The first one

consists of the horizontal and vertical neighbors, and the second one consists of the diagonal

neighbors. By concatenating these two LBP histograms, we obtain the OC-LBP histogram

with 32 dimensions, which is 8 times more compact than the original 8-neighbor LBP

histogram (256 dimensions). Meanwhile, this combination keeps quite well the discriminative

power of the original LBP because it preserves the same number of distinct binary patterns

(24 × 24) as before (28).

This orthogonal combination of local binary patterns (OC-LBP) can also be generalized in

different ways. For instance, the neighboring pixels of the original LBP can be first split into

several non-overlapped orthogonal groups, then the LBP code can be computed separately for

each group, and finally the histograms based on these separate LBP codes can be concatenated

and used as the image description.
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Figure 2: Calculation of the LBP and OC-LBP operators with 8 neighboring pixels

2.3. Comparison with other popular LBP dimensionality reduction methods

In this section, we make a comparison between the proposed OC-LBP and other two

popular dimensionality reduction methods for LBP both in terms of discriminative power and

feature dimensionality. These two methods, namely “uniform patterns” [27] and CS-LBP [35],

are compared here with OC-LBP on operator level. The comparisons in the context of local

region descriptor will be presented in section 5.

In [27], Ojala et al. proposed the concept of “uniform patterns”, which are a subset of the

original LBP codes, and are considered to convey some fundamental properties of texture.

These patterns are called “uniform” because they have one property in common: no more

than two spatial transitions (one-to-zero or zero-to-one) in the circular binary code. For P

neighboring pixels, they lead to a histogram of P × (P − 1) + 3 dimensions. The “uniform

patterns” have been proven to be an effective way for LBP dimensionality reduction [37].

In [35], Heikkilä et al. proposed center-symmetric local binary pattern (CS-LBP) operator

for dimensionality reduction. They modified the scheme of how to compare the pixels in

the neighborhood. Instead of comparing each pixel with the central pixel, they compare
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Table 1: Comparison of the histogram dimensionality of different methods with P neighboring pixels

LBP Uniform patterns CS-LBP OC-LBP

2P P × (P − 1) + 3 2[P/2] 4× P

center-symmetric pairs of pixels. This halves the number of comparisons compared to the

original LBP.

Table 1 summarizes the dimensionality of the histograms produced by different methods

with P neighboring pixels.

As we can see, the most effective scheme in terms of histogram dimensionality reduction is

the proposed OC-LBP, which is linear with P — the number of neighboring pixels, compared

to exponential dimension of the original LBP and CS-LBP, and quadratic dimension of

“uniform patterns”. Then, what about the discriminative power of OC-LBP compared to

the original LBP, CS-LBP and “uniform patterns”?

Since the LBP operator is originally designed as a texture feature, a standard texture

classification dataset [38] is chosen to carry out the comparisons. This dataset, namely

Outex TC 00014, contains images of 68 different textures, such as canvas, carpet, granite,

tile, sandpaper, wood, and so on. Each kind of texture produces three images of size 746×538

pixels under three different illuminants: 2856K incandescent CIE A light source (Inca), 2300K

horizon sunlight (Horizon) and 4000K fluorescent TL84 (TL84). Then each image is equally

divided into 20 non-overlapping sub-images of size 128× 128 pixels, resulting in 1360 images

for each illuminant. The training set is constituted by half of the images under the Inca

illuminant, and the test set is constituted by half of the images under the two other illuminants

(Horizon and TL84). Therefore, the total numbers of training and test images are 680 and

1360 respectively.

For texture classification, we follow the same process for all the features (the original LBP,

“uniform patterns”, CS-LBP and the proposed OC-LBP). For each image in the training /

test set, each of the operators is applied on all the pixels of the image to get their binary

pattern values, and the histogram computed throughout the image is then used as its texture

feature. The support vector machine (SVM) is applied for classification. We compute the χ2

distance as equation (3) to measure the similarity between each pair of the feature vectors F
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and F ′ (n is the size of both feature vectors):

distχ2(F, F ′) =

n
∑

i=1

(Fi − F ′
i )

2

Fi + F ′
i

(3)

Then, the kernel based on this distance is computed as equation (4) for the SVM training

and prediction:

Kχ2(F, F ′) = e−
1

D
dist

χ2 (F,F ′) (4)

where D is the parameter for normalizing the distances. Here D is set as the average value of

distances between each pair of images in the training set. Finally, each test image is classified

into texture category with the maximum SVM output decision value. We tune the parameters

of the classifier on the training set via 5-fold cross-validation, and obtain the classification

results on the test set.

The classification results and comparisons are presented in Table 2. It can be seen

that the classification accuracy generally keeps improving when the number of neighboring

pixels increases, suggesting that the consideration of more neighbors can be beneficial to the

operator’s performance. However, the increment speed of histogram size for the original LBP

is devastating. For example, the LBP histogram size with 20 neighboring pixels is so enormous

that it is impractical to be used directly. This shows the importance of dimensionality

reduction for LBP. The CS-LBP operator reduces the LBP histogram size to its square root,

but it also decreases the classification accuracy. One possible reason is that it discards the

information of central pixel in comparison. The “uniform patterns” show good performances,

because it significantly reduces the LBP histogram size, while still keeping high discriminative

power. Actually, it performs even a little better than the original LBP, because it only keeps

the most important part of LBP and removes the other disturbances. Compared to these two

methods, the proposed OC-LBP operator shows its effectiveness. It outperforms CS-LBP and

achieves almost the same high performance as the “uniform patterns” but with the smallest

histogram size among them.

3. Local region description with OC-LBP

We construct a new local region descriptor based on the proposed OC-LBP operator by

following a way similar to the SIFT [8] and CS-LBP [35] descriptors. Fig. 3 depicts the
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Table 2: Comparison of different LBP dimensionality reduction methods in terms of histogram size and

classification accuracy on Outex TC 00014 (P,R: P neighboring pixels equally located on a circle of radius R)

P,R
LBP Uniform patterns CS-LBP OC-LBP

Bins Result Bins Result Bins Result Bins Result

4,1 16 58.5% 15 58.8% 4 27.8% 16 58.5%

8,1 256 61.4% 59 66.1% 16 50.2% 32 65.4%

12,2 4096 68.7% 135 72.4% 64 61.8% 48 72.7%

16,2 65536 67.6% 243 73.4% 256 54.7% 64 73.2%

20,3 1048576 — 383 74.0% 1024 55.7% 80 74.6%

construction process. The input of the descriptor is a normalized local image region around a

keypoint, which is either detected by certain interest point detector such as Harris-Laplace, or

located on a dense sampling grid. The OC-LBP operator is then applied on all the pixels in

the region to get their binary pattern values. In order to include coarse spatial information,

the region is equally divided into several small cells, within which a histogram is built based on

the binary pattern values of all the pixels. The final descriptor is constructed by concatenating

all the histograms from the cells. We adopt the uniform strategy for pixel weighting, as the

CS-LBP descriptor, and a SIFT-like approach for descriptor normalization. The descriptor is

first normalized to unit length, each value is then restricted to be no larger than 0.2 (threshold)

so that the influence of very large values is reduced, and finally the descriptor is renormalized

to unit length. We denote this new local image descriptor as OC-LBP descriptor.

OC-LBP histogram 

OC-LBP histogram 

Final OC-LBP 

descriptor Normalized 

region 

Detected interest regions 

Figure 3: Construction of local image descriptor with OC-LBP
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4. Color OC-LBP descriptors

The classical LBP-related descriptors only use gray information. However, color

information may significantly improve the discriminative power of a descriptor. Moreover,

incorporating color information may enhance its photometric invariance properties when

dealing with different kinds of illumination changes as described in section 4.1.

4.1. Model analysis for illumination changes

Changes in illumination can be expressed by the diagonal model as equation (5) and the

diagonal-offset model as equation (6), where u and c represent respectively the values before

and after illumination transformation:




Rc

Gc

Bc



 =





α 0 0

0 β 0

0 0 γ









Ru

Gu

Bu



 (5)





Rc

Gc

Bc



 =





α 0 0

0 β 0

0 0 γ









Ru

Gu

Bu



+





O1

O2

O3



 (6)

Based on these two models, different kinds of illumination changes can be expressed as follows

[25]:

Light intensity change. Image values change by a constant factor in all channels (α =

β = γ):




Rc

Gc

Bc



 =





α 0 0

0 α 0

0 0 α









Ru

Gu

Bu



 (7)

Light intensity shift. Image values change by an equal offset in all channels (α = β =

γ = 1, O1 = O2 = O3):




Rc

Gc

Bc



 =





Ru

Gu

Bu



+





O1

O1

O1



 (8)

Light intensity change and shift. Image values change by combining two kinds of

change above:




Rc

Gc

Bc



 =





α 0 0

0 α 0

0 0 α









Ru

Gu

Bu



+





O1

O1

O1



 (9)

Light color change. Image values change in all channels independently (α 6= β 6= γ), as

equation (5).
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Light color change and shift. Image values change in all channels independently with

arbitrary offsets (α 6= β 6= γ and O1 6= O2 6= O3), as equation (6).

4.2. Color OC-LBP descriptors and their properties

In order to incorporate color information, we extend the OC-LBP descriptor to different

color spaces and propose six color OC-LBP descriptors in this section. The main idea is to

calculate the original OC-LBP descriptor independently over different channels in a given

color space, and then concatenate them to get the final color OC-LBP descriptor, as shown

in Fig. 4.

Color 

space 

OC-LBP descriptor 

over each channel 

Final color OC-LBP 

descriptor 

Figure 4: Calculation of color OC-LBP descriptor

The RGB, HSV , and OPPONENT color spaces are chosen for calculating color OC-LBP

descriptors because of their own characteristics. RGB is the most popular color space used

in electronic systems for sensing, representation and display of images. It uses additive color

mixing with primary colors of red, green and blue to reproduce a broad range of colors. HSV

color space rearranges the geometry of RGB so that it could be more relevant to human

perception, because it is more natural to think about a color in terms of hue and saturation

than in terms of additive color components. OPPONENT color space is constructed to be
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consistent with human visual system, because it proves more efficient for human visual system

to record differences between responses of cones, rather than each type of cone’s individual

response. Details of the proposed color OC-LBP descriptors and their properties are presented

as follows:

RGB-OC-LBP. This color descriptor is obtained by computing the OC-LBP descriptor

over all three channels of the RGB color space. It is invariant to monotonic light intensity

change due to the property of the original OC-LBP descriptor.

NRGB-OC-LBP. This color descriptor is obtained by computing the OC-LBP descriptor

over both r and g channels of the normalizedRGB color space as equation (10) (b channel is

redundant because r + g + b = 1):

(

r

g

)

=

(

R/(R+G+B)

G/(R+G+B)

)

(10)

Due to the normalization, the change factors can be cancelled out if they are constant in all

channels. This is proven as equation (11) (Let a be the constant factor):

(

r

g

)

=

(

R/(R+G+B)

G/(R+G+B)

)

=

(

aR′/(aR′ + aG′ + aB′)

aG′/(aR′ + aG′ + aB′)

)

=

(

aR′/a(R′ +G′ +B′)

aG′/a(R′ +G′ +B′)

)

=

(

R′/(R′ +G′ +B′)

G′/(R′ +G′ +B′)

)
(11)

Therefore, r and g channels are scale-invariant, which makes this descriptor invariant to light

intensity change as equation (7).

OPPONENT-OC-LBP. This color descriptor is obtained by computing the OC-LBP

descriptor over all three channels of the OPPONENT color space as equation (12):





O1

O2

O3



 =





(R−G)/
√
2

(R+G− 2B)/
√
6

(R+G+B)/
√
3



 (12)

Due to the subtraction in O1 and O2, the change offsets can be cancelled out if they are equal

in all channels. This is proven as equation (13) (Let a be the equal offset):

(

O1

O2

)

=

(

(R−G)/
√
2

(R+G− 2B)/
√
6

)

=

(

((R′ + a)− (G′ + a))/
√
2

((R′ + a) + (G′ + a)− 2(B′ + a))/
√
6

)

=

(

(R′ −G′)/
√
2

(R′ +G′ − 2B′)/
√
6

)

(13)
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Therefore, O1 and O2 channels are invariant to light intensity shift as equation (8). O3 channel

represents the intensity information, and has no invariance properties.

NOPPONENT-OC-LBP. This color descriptor is obtained by computing the OC-LBP

descriptor over two channels of the normalizedOPPONENT color space as equation (14):

(

O′
1

O′
2

)

=

(

O1

O3

O2

O3

)

=





√
3(R−G)√

2(R+G+B)
R+G−2B√
2(R+G+B)



 (14)

Due to the normalization by intensity channel O3, O
′
1 and O′

2 channels are scale-invariant,

which makes this descriptor invariant to light intensity change as equation (7).

Hue-OC-LBP. This color descriptor is obtained by computing the OC-LBP descriptor

over the Hue channel of the HSV color space as equation (15):

Hue = arctan(
O1

O2
) = arctan(

√
3(R−G)

R+G− 2B
) (15)

Due to the subtraction and the division, Hue channel is scale-invariant and shift-invariant,

therefore this descriptor is invariant to light intensity change and shift as equation (9).

TC-OC-LBP. This color descriptor is obtained by computing the OC-LBP descriptor

over all three channels of the transformed color space as equation (16) (µ is the mean and

σ is the standard deviation of each channel):





R′

G′

B′



 =





(R− µR)/σR
(G− µG)/σG
(B − µB)/σB



 (16)

Due to the subtraction and the normalization, all three channels are scale-invariant and

shift-invariant, which makes this descriptor invariant to light intensity change and shift as

equation (9). Furthermore, because each channel is operated independently, this descriptor is

also invariant to light color change and shift as equation (6).

It should be noticed that this descriptor has equal values to the RGB-OC-LBP descriptor.

Because the LBP is computed by taking the subtraction of the neighboring pixels and the

central one, the subtraction of the means in this color space is redundant, as this offset is

already cancelled out when computing the LBP. And since the descriptor normalization for

each channel is done separately, the division of the standard deviation is also redundant.

Therefore, the RGB-OC-LBP descriptor is used in this paper to represent both descriptors.
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5. Experimental evaluation

We evaluated the proposed intensity-based and color OC-LBP descriptors in three different

applications: (1)image matching, (2)object recognition and (3)scene classification. The

Oxford image matching dataset [39] is used for parameter selection and image matching

experiments. Two standard image datasets — the PASCAL VOC 2007 benchmark [40] and the

SIMPLIcity dataset [41] — are applied for object recognition experiments. The scene dataset

from Oliva and Torralba [42] is adopted for scene classification experiments. The proposed

descriptors are compared with several state-of-the-art descriptors including SIFT [8], color

SIFT [25], CS-LBP [35], SURF [11], HOG [12] and GIST [42]. These descriptors have been

chosen for their diversity in terms of local visual content characterization. While SIFT and

color SIFT are the most popular and successful local descriptors in the literature, HOG is also a

popular descriptor which captures local object appearance and shape through the distribution

of intensity gradients. As such it is widely used for object detection and recognition. GIST is

a popular holistic feature which estimates the dominant spatial structure of a scene to capture

a set of perceptual dimensions (naturalness, openness, roughness, expansion and ruggedness).

As such it is widely applied for scene classification. SURF is a typical local descriptor using

Haar wavelets as features. Finally, CS-LBP is also binary-pattern-based and provides a way

for LBP dimensionality reduction, as we introduced in section 2.3.

5.1. Parameter selection

There are three parameters to be fixed for the proposed OC-LBP descriptors, including

the number of neighboring pixels for the OC-LBP operator (P ), the radius of neighboring

circle for the OC-LBP operator (R), and the number of cells for each region (M ×M). For

simplicity, the parameters P and R are evaluated in pairs, such as (4,1), (8,1), (12,2), (16,2),

(20,3), etc. Also, we select the parameters based on the gray OC-LBP descriptor, and apply

the best settings on all color OC-LBP descriptors.

We adopt the standard Oxford image matching dataset [39] for parameter selection. This

dataset contains image pairs with different geometric and photometric transformations (image

blur, viewpoint change, illumination change, etc.) and different scene types (structured and

textured). The sample image pairs are shown in Fig. 5. Here the image pair named “Graf” is

used for parameter selection as in [35]. To compute the descriptors, an interest region detector
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Figure 5: Sample image pairs of the Oxford image matching dataset

is required at first to detect interest regions in each image. We apply the Harris-Affine detector

to detect the corner-like structures in images. It originally outputs the elliptic regions of

varying scales, and all the regions are then normalized and mapped to a circular region with

fixed radius to obtain scale and affine invariance. The normalized regions are also rotated to

the direction of their dominant gradient orientations to obtain the rotation invariance. We use

the software package available on the same website as the dataset for interest region detection

and normalization. Each detected region is normalized to the size of 41 × 41 pixels. Then,

all the regions from each image are described by the OC-LBP descriptor, and are matched

according to their Euclidean distances. An ROC curve is obtained by changing the distance

threshold for matching, and a matching score is also obtained at the same time by applying

nearest neighbor matching strategy and measuring the percentage of the correct matches.

The results are shown in Fig. 6. From sub-figures (1) to (5), it can be seen that 3× 3 cells

obtain the best results for almost all the pairs of (P,R), both in ROC curve and matching

score cases. Therefore, we fix the number of cells to 3 × 3, and then compare the different

values of (P,R) pair in sub-figure (6). The best performance is achieved when P = 12, R = 2.

We thus apply this parameter setting on gray OC-LBP descriptor and all color OC-LBP

descriptors in the following experiments.

5.2. Experiments on image matching

We adopt the same dataset introduced in section 5.1 to evaluate the proposed descriptors

in the application of image matching. The performances of the descriptors are evaluated by

the matching criterion, which is based on the number of correctly and falsely matched regions
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Figure 6: Parameter selection results for the OC-LBP descriptor (matching score presented between

parentheses)

between a pair of images. Two image regions are considered to be matched if the Euclidean

distance between their descriptors is below a threshold. The number of correct matches is

determined by the “overlap error” [43]. A match is assumed to be correct if this error value

is smaller than 0.5. The results are presented by recall versus 1-precision curve:

recall =
#correct matches

#correspondences
(17)

1− precision =
#false matches

#all matches
(18)

where #correspondences is the ground truth number of matches between the images. By

changing the distance threshold, we can obtain the recall versus 1-precision curve.

5.2.1. Experimental setup

We use the software package mentioned in section 5.1 for interest region detection, region

normalization, and SIFT computation. We implement the CS-LBP descriptor according to

[35], and apply the same parameter setting as the OC-LBP descriptor for fair comparison. To

compute color SIFT descriptors, we use the “ColorDescriptor” software available online [44].
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5.2.2. Experimental results

The image matching results on the Oxford dataset are shown in Fig. 7 and Fig. 8. Fig. 7

shows the comparisons of the proposed gray and color OC-LBP descriptors with the popular

SIFT and CS-LBP descriptors. Fig. 8 shows the comparisons of the best three color OC-LBP

descriptors with the state-of-the-art color SIFT descriptors.
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Figure 7: Image matching results on the Oxford dataset (comparisons of the proposed descriptors with the

popular SIFT and CS-LBP descriptors)

We can see from the results in Fig. 7 that: (1) the OC-LBP descriptor performs

better than the popular CS-LBP and SIFT descriptors; (2) the color OC-LBP descriptors

outperform the intensity-based OC-LBP descriptor in most of the cases, proving the usefulness

of incorporating color information and additional photometric invariance properties;

(3) among the proposed color OC-LBP descriptors, Hue-OC-LBP, RGB-OC-LBP and

NOPPONENT-OC-LBP descriptors have the best overall performance, which is consistent

with their strong properties of illumination invariance.

We then compare the best three color OC-LBP descriptors with their counterparts: the

state-of-the-art color SIFT descriptors. The best three color SIFT descriptors are chosen

according to [25]. The results in Fig. 8 show that the color OC-LBP descriptors also achieve
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Figure 8: Image matching results on the Oxford dataset (comparisons of the best three color OC-LBP

descriptors with the state-of-the-art color SIFT descriptors)

slightly better performances than color SIFT.

5.3. Experiments on object recognition

In order to evaluate the proposed descriptors in the application of object recognition,

two standard image datasets are used: the PASCAL VOC 2007 benchmark [40] and the

SIMPLIcity dataset [41].

The PASCAL VOC 2007 benchmark contains nearly 10 000 images of 20 different object

classes, such as bike, car, cat, table, person, sofa, train, etc. Each object class contains different

number of images, from hundreds to thousands. The dataset is divided into a predefined

training set (2501 images), validation set (2510 images) and test set (4952 images). The mean

average precision (MAP) is used as the evaluation criterion. Some example images are shown

in Fig. 9.

The SIMPLIcity dataset is a subset of COREL image database. It contains totally 1000

images, which are equally divided into 10 different categories: African people, beach, building,

bus, dinosaur, elephant, flower, horse, mountain and food. We randomly choose half of the
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images for training and the other half for test. The recognition accuracy is used as the

evaluation criterion. Some example images are shown in Fig. 10.

Aeroplane         Bicycle             Bird               Boat              Bottle               Bus                 Car 

      Cat               Chair              Cow          Dining table        Dog               Horse         Motorbike 

   Person        Potted plant        Sheep              Sofa              Train        TV/monitor 

Figure 9: Example images of the PASCAL VOC 2007 benchmark

African people beach building bus dinosaur 

elephant flower horse mountain food 

Figure 10: Example images of the SIMPLIcity dataset

These two datasets have different characteristics. In the SIMPLIcity dataset, most images

have little or no clutter. The objects tend to be centered in each image. Most objects are

presented in a stereotypical pose. In the PASCAL VOC 2007 benchmark, all the images

are taken from the real-world scenes, thus with background clutter, occlusions, and various

variations in viewpoint, pose and lighting condition, which increase the difficulties of object

recognition in this dataset.
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5.3.1. Our approach for object recognition

The block diagram of our approach for visual object recognition is depicted in Fig. 11.

Input Images Feature 

Extraction 

Local Descriptors 
Bag-of-Features 

Modeling 

Fixed-Length 

Feature Vectors 

Kernel 

Computation 

Similarity Matrix 
Classifier 

(SVM) 

Object Class 

Prediction 

Figure 11: Flowchart of our approach for object recognition

5.3.2. Feature extraction

The interest points in images are first detected by applying Harris-Laplace salient point

detector, which uses a Harris corner detector and subsequently the Laplacian for scale

selection. Then a set of local descriptors, including gray OC-LBP, three best color OC-LBP,

CS-LBP, SURF, HOG, SIFT and three best color SIFT, are extracted from local region around

each interest point. Unlike the settings in the application of image matching, the descriptors

are not rotated to their dominant orientations, because this rotation invariance is useful for

image matching, but decreases the accuracy for object recognition.

5.3.3. Bag-of-Features modeling

After the step of feature extraction, each image is represented by a set of local descriptors.

The number of local descriptors in each image varies because the number of the interest points

(normally around thousands) changes from one image to another one. Thus, an efficient

modeling method is required to transform this variable number of local descriptors into a

more compact, informative and fixed-length representation for further classification.

We apply the popular Bag-of-Features (BoF) approach [5] because of its great success in

object recognition tasks. As introduced in section 1, the main idea of BoF is to represent an

image as an orderless collection of local descriptors. More precisely, a visual vocabulary is

constructed at first by applying a clustering algorithm on the training data, and each cluster
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center is considered as a “visual word” in the vocabulary. All the descriptors extracted from

an image are then quantized to their closest “visual word” in an appropriate metric space.

The number of the descriptors assigned to each “visual word” is accounted into a histogram

as the final BoF representation.

Specifically, we build a vocabulary of 1000 “visual words” for the SIMPLIcity dataset and

4000 “visual words” for the PASCAL VOC 2007 benchmark for each kind of local descriptors

respectively by applying the k-means clustering algorithm on a subset of the descriptors which

are randomly selected from the training data.

5.3.4. Classification

The support vector machine (SVM) algorithm is applied for object classification. Here

the LibSVM implementation [45] is used. Once all the local descriptors are transformed to

fixed-length feature vectors by the BoF method, the χ2 distance is computed as equation (3)

to measure the similarity between each pair of feature vectors. Then, the kernel function

based on this distance is computed as equation (4) for the SVM training and prediction.

For the SIMPLIcity dataset, each image is classified into the category with the maximum

SVM output decision value. We tune the parameters of the classifier on the training set via

5-fold cross-validation, and obtain the classification results on the test set. For the PASCAL

VOC 2007 benchmark, the precision-recall curve is plotted according to the output decision

values of the SVM classifier, and the AP (Average Precision) value is computed based on the

proportion of the area under this curve. We train the classifier on the training set, then tune

the parameters on the validation set, and obtain the classification results on the test set.

5.3.5. Experimental results on PASCAL VOC 2007

The object recognition results on the PASCAL VOC 2007 benchmark are shown in Table 3.

It can be seen that: (1) the proposed OC-LBP descriptor achieves the performance of 38.7%

MAP, which is better than SURF and HOG, and comparable with CS-LBP and SIFT;

(2) the best three color OC-LBP descriptors (Hue-OC-LBP, NOPPONENT-OC-LBP and

RGB-OC-LBP) achieve 40.3%, 40.9% and 40.9% MAP respectively, which outperform the

intensity-based OC-LBP by about 2% ∼ 3%, indicating that they truly benefit from additional

color information and illumination invariance properties; (3) compared to the state-of-the-art
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Table 3: Object recognition results on the PASCAL VOC 2007 benchmark (“NOP-OC-LBP” is the abbreviation

of “NOPPONENT-OC-LBP”, “OP-SIFT” is the abbreviation of “OPPONENT-SIFT”)

AP (%) OC-

LBP

Hue-

OC-

LBP

NOP-

OC-

LBP

RGB-

OC-

LBP

CS-

LBP

HOG SURF SIFT OP-

SIFT

C-

SIFT

RGB-

SIFT

airplane 62.2 64.3 64.2 61.9 59.2 52.1 39.7 56.0 59.9 58.7 57.8

bicycle 38.6 35.4 39.1 42.0 44.8 26.9 45.9 44.9 43.8 38.9 44.6

bird 25.9 32.9 34.8 32.1 27.4 25.0 26.7 28.2 27.7 32.1 22.5

boat 56.4 56.0 60.8 59.5 53.0 40.6 21.0 45.7 49.1 51.8 46.6

bottle 15.0 20.4 20.0 20.3 19.5 12.8 10.2 19.6 21.2 21.4 21.0

bus 37.8 35.5 35.0 41.1 33.2 38.3 28.1 37.7 38.0 32.5 37.7

car 62.6 60.5 61.4 65.1 63.1 58.1 52.5 55.0 57.4 53.2 56.1

cat 38.9 39.3 39.7 42.9 40.2 27.5 24.3 36.5 37.7 34.1 37.3

chair 39.0 40.5 41.3 39.3 38.7 43.8 33.3 44.5 42.4 45.9 43.5

cow 20.6 21.5 14.6 24.9 18.3 19.8 20.8 25.9 17.0 16.6 27.8

table 35.0 36.1 37.0 32.0 33.1 33.6 25.7 29.6 36.7 38.7 29.1

dog 32.8 35.3 29.4 33.4 31.7 20.4 23.8 26.5 29.8 29.1 28.8

horse 57.6 64.6 63.6 58.3 55.2 59.3 50.7 57.0 59.1 61.9 54.8

motor 36.9 39.2 41.7 37.3 34.1 37.2 37.4 30.2 33.9 44.4 32.1

person 74.1 77.2 75.5 74.7 73.0 66.2 70.8 73.1 74.5 76.6 72.7

plant 21.3 22.7 26.7 20.1 17.5 10.4 13.8 11.5 19.9 27.1 11.5

sheep 12.3 23.5 26.0 19.9 16.9 18.4 9.4 27.4 31.2 30.9 19.4

sofa 25.8 27.8 27.5 25.0 19.0 26.3 19.3 23.6 22.9 23.2 24.6

train 56.1 44.2 51.7 55.5 56.8 52.7 42.9 53.4 54.5 58.5 51.1

monitor 25.6 29.2 27.9 31.8 31.7 32.3 25.7 33.7 35.0 27.3 35.6

Mean 38.7 40.3 40.9 40.9 38.3 35.1 31.1 38.0 39.6 40.1 37.7

color SIFT descriptors, the best three color OC-LBP descriptors achieve comparable or even

better results.

After analyzing the detailed results in Table 3 by each object category, we could observe

that the LBP-based descriptors generally perform better on the non-rigid object categories

such as bird, cat, dog, horse, person, plant and sofa, while the SIFT-based descriptors are

generally better for the rigid object categories such as bicycle, bottle, chair, table, motor,

train and monitor. Also, the color descriptors with different photometric invariance properties

perform differently on the same object category. Therefore, we further combine different color

OC-LBP descriptors, as well as color OC-LBP and color SIFT by average late fusion to check

if they can provide complementary information to each other. The fusion results are shown
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Table 4: Fusion results of color OC-LBP and color SIFT on the PASCAL VOC 2007 benchmark

AP (%) FUSION

(3 Color OC-LBP)

FUSION

(3 Color SIFT)

FUSION

(3 Color OC-LBP

+3 Color SIFT)

airplane 67.0 61.8 67.8

bicycle 48.0 49.8 56.4

bird 36.7 35.0 43.4

boat 62.2 52.9 60.9

bottle 17.6 23.6 26.2

bus 46.4 44.4 51.3

car 67.8 61.7 68.6

cat 45.8 41.7 46.2

chair 43.6 48.2 48.6

cow 26.9 29.1 29.2

table 43.2 41.8 48.2

dog 35.8 32.9 39.3

horse 64.9 64.8 69.6

motor 46.1 48.3 53.3

person 77.8 77.3 79.2

plant 27.3 26.5 31.3

sheep 24.3 33.8 31.7

sofa 32.4 30.6 37.5

train 60.1 62.9 68.3

monitor 35.1 38.1 39.5

Mean 45.5 45.3 49.8

in Table 4.

It can be observed that: (1) a great performance improvement (about 5%) can be obtained

by fusing different color descriptors, both for OC-LBP and SIFT, proving that different

color descriptors are not entirely redundant; (2) the color OC-LBP descriptors still achieve

comparable or slightly better results than color SIFT after fusion; (3) the performance can be

further improved (more than 4%) by fusing color OC-LBP and color SIFT, indicating that

these two kinds of descriptors can provide complementary information to each other.

5.3.6. Experimental results on SIMPLIcity

The object recognition results on the SIMPLIcity dataset are shown in Table 5 and

Table 6. The similar observations to that on the PASCAL VOC benchmark can be noticed.
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Table 5: Object recognition results on the SIMPLIcity dataset (“NOP-OC-LBP” is the abbreviation of

“NOPPONENT-OC-LBP”, “OP-SIFT” is the abbreviation of “OPPONENT-SIFT”)

Accuracy

(%)

OC-

LBP

Hue-

OC-

LBP

NOP-

OC-

LBP

RGB-

OC-

LBP

CS-

LBP

HOG SURF SIFT OP-

SIFT

C-

SIFT

RGB-

SIFT

people 70.0 84.0 80.0 78.0 70.0 58.0 72.0 76.0 76.0 84.0 74.0

beach 74.0 82.0 86.0 76.0 82.0 68.0 76.0 82.0 88.0 86.0 82.0

building 82.0 86.0 84.0 82.0 80.0 66.0 66.0 74.0 78.0 74.0 70.0

bus 98.0 96.0 96.0 98.0 88.0 90.0 92.0 94.0 96.0 90.0 96.0

dinosaur 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

elephant 74.0 70.0 72.0 72.0 80.0 70.0 78.0 88.0 84.0 74.0 94.0

flower 82.0 94.0 88.0 86.0 88.0 58.0 70.0 92.0 96.0 86.0 88.0

horse 98.0 98.0 98.0 96.0 96.0 92.0 82.0 96.0 98.0 100.0 94.0

mountain 68.0 68.0 74.0 68.0 64.0 64.0 50.0 62.0 70.0 72.0 70.0

food 88.0 92.0 100.0 96.0 80.0 72.0 78.0 86.0 88.0 94.0 90.0

Mean 83.4 87.0 87.8 85.2 82.8 73.8 76.4 85.0 87.4 86.0 85.8

The color OC-LBP descriptors outperform CS-LBP, SURF, HOG, SIFT, as well as the

intensity-based OC-LBP, and achieve comparable results with the color SIFT descriptors.

Further improvement (nearly 5%) can be obtained by fusing three color OC-LBP and three

color SIFT descriptors, since they provide complementary information to each other.

5.3.7. Performance comparison of the OC-LBP descriptor using SVM with different kernels

In order to compare and evaluate the effect of using SVM with different kernels for

classification, we made supplementary comparisons in this section. The recognition approach

remains the same as the one introduced in section 5.3.1, and only the OC-LBP descriptor

is used as feature. Different kernel comparisons are considered, including linear kernel vs.

non-linear kernel, and comparison between different non-linear kernels (Chi-square (χ2) vs.

RBF). The results are presented in Table 7 and Table 8.

From the results we can see that: (1) non-linear kernels perform much better than linear

kernel, suggesting that the feature distributions of these datasets are quite complex, and linear

kernel is not a good choice; (2) for different non-linear kernels, Chi-square (χ2) performs better

than RBF. The reason is that Chi-square (χ2) is a histogram distance and Chi-square (χ2)

kernel outputs similarities between histogram-based features as the ones delivered by the
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Table 6: Fusion results of color OC-LBP and color SIFT on the SIMPLIcity dataset

Accuracy

(%)

FUSION

(3 Color OC-LBP)

FUSION

(3 Color SIFT)

FUSION

(3 Color OC-LBP

+3 Color SIFT)

people 86.0 86.0 86.0

beach 86.0 88.0 86.0

building 86.0 78.0 86.0

bus 100.0 98.0 100.0

dinosaur 100.0 100.0 100.0

elephant 82.0 90.0 86.0

flower 98.0 100.0 98.0

horse 98.0 100.0 100.0

mountain 78.0 76.0 82.0

food 96.0 96.0 98.0

Mean 91.0 91.2 92.2

Table 7: Performance comparison of the OC-LBP descriptor using SVM with different kernels on the PASCAL

VOC 2007 benchmark

AP (%) Linear RBF Chi-square (χ2)

airplane 57.6 57.5 62.2

bicycle 20.3 23.8 38.6

bird 14.1 19.9 25.9

boat 51.6 47.8 56.4

bottle 10.0 11.3 15.0

bus 22.7 33.9 37.8

car 44.7 51.7 62.6

cat 25.3 33.2 38.9

chair 35.6 35.4 39.0

cow 17.2 18.3 20.6

table 17.7 24.9 35.0

dog 21.9 28.9 32.8

horse 44.0 53.4 57.6

motor 23.4 24.2 36.9

person 66.1 70.1 74.1

plant 12.8 13.5 21.3

sheep 7.9 7.4 12.3

sofa 14.0 15.4 25.8

train 36.8 48.9 56.1

monitor 19.3 21.5 25.6

Mean 28.2 32.1 38.7
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Table 8: Performance comparison of the OC-LBP descriptor using SVM with different kernels on the

SIMPLIcity dataset

Accuracy (%) Linear RBF Chi-square (χ2)

people 66.0 80.0 70.0

beach 64.0 70.0 74.0

building 60.0 74.0 82.0

bus 96.0 98.0 98.0

dinosaur 100.0 100.0 100.0

elephant 78.0 70.0 74.0

flower 74.0 84.0 82.0

horse 86.0 96.0 98.0

mountain 64.0 60.0 68.0

food 86.0 82.0 88.0

Mean 77.4 81.4 83.4

Bag-of-Features (BoF) approach. Therefore, we choose Chi-square (χ2) kernel together with

the BoF approach for classification in our experiments.

5.4. Experiments on scene classification

We also evaluated the proposed descriptors in the application of scene classification. The

dataset from Oliva and Torralba [42] is used, and denoted as OT scene dataset. It consists of

2688 color images from 8 scene categories: coast (360 samples), forest (328 samples), mountain

(374 samples), open country (410 samples), highway (260 samples), inside city (308 samples),

tall building (356 samples) and street (292 samples). Fig. 12 shows some sample images of

each category.

5.4.1. Experimental setup

For this scene classification problem, our approach is the same as the one used for object

recognition, as described in section 5.3.1, but with a different setting. Instead of detecting

interest points in images using Harris-Laplace detectors, we apply the dense sampling strategy

to locate keypoints for local descriptor computation. This is because for scene classification,

we prefer to focus on the content of the whole image, rather than on “object” part only.

Specifically, the sampling spacing is set to 6 pixels, resulting in around 1700 keypoints per

image. A visual vocabulary of 2000 “visual words” is constructed for each kind of local

descriptor to build the corresponding Bag-of-Features (BoF) representations.
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coast forest highway inside sity 

mountain open country street tall building 

Figure 12: Example images of the OT scene dataset

We randomly choose half of the images from each scene category for training, and the

other half for test. The recognition accuracy is used as the evaluation criterion. We tune

the parameters of the classifier on the training set via 5-fold cross-validation, and obtain the

classification results on the test set.

5.4.2. Experimental results

The classification results on the OT scene dataset are shown in Fig. 13. It can be seen

that the proposed OC-LBP descriptor performs better than the SURF descriptor, and achieves

comparable results with the popular GIST, CS-LBP and SIFT. The proposed color OC-LBP

descriptors further demonstrate their effectiveness as they display superior performances than

all the intensity-based descriptors. They also show their ability of being complementary

to the state-of-the-art color SIFT descriptors, since their fusion (fusion 3 in the figure)

clearly improves the performance. It is worthy to notice that the NOPPONENT-OC-LBP

descriptor does not perform well in this case, while its performance is quite good in the

application of object recognition. The reason could be that the OT scene dataset contains

more varieties of illumination changes than the object recognition datasets whereas the

NOPPONENT-OC-LBP descriptor is only invariant to light intensity change. This also

explains why RGB-OC-LBP and RGB-SIFT perform the best among the color descriptors,
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since they possess the strongest invariance properties (invariant to light color change and

shift).

76 79 82 85 88 91 94 

Fusion3 (fusion1+fusion2) 

Fusion2 (3 color SIFT) 

RGB-SIFT 

OPPONENT-SIFT 

C-SIFT 

SIFT 

GIST 

SURF 

CS-LBP 

Fusion1 (3 color OC-LBP) 

RGB-OC-LBP 

NOPPONENT-OC-LBP 

Hue-OC-LBP 

OC-LBP 

Recognition Accuracy (%) 

Figure 13: Classification results on the OT scene dataset

5.5. Computational cost comparison between descriptors

As we state in the introduction, a good local descriptor should be both discriminative and

computationally efficient. The discriminative power of the proposed gray and color OC-LBP

descriptors has been demonstrated by the previous experiments and applications, and they

achieve comparable or even better performances than the state-of-the-art SIFT and color SIFT

descriptors. In this section, we show the computational efficiency of the proposed descriptors

also in comparison with the popular SIFT and color SIFT.

The comparisons are conducted on the four image datasets used in the previous

experiments by utilizing a computer with Intel Core 2 Duo CPU @ 3.16 GHz and 3GB

RAM. We implement the gray and color OC-LBP descriptors by a mixture of C and Matlab1,

and use the “ColorDescriptor” software [44] to compute SIFT and color SIFT. We record in

Table 9 the average computation time required per image for each descriptor respectively.

It can be seen that the OC-LBP descriptor is about 4 times faster to compute than SIFT.

1The source code for computing the gray and color OC-LBP descriptors will be publicly available soon.
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Table 9: Computational cost comparison between OC-LBP and SIFT descriptor

Times (s) Oxford

(1000× 700)

SIMPLIcity

(384× 256)

PASCAL

(500× 375)

OT Scene

(256× 256)

OC-LBP 0.2731 0.0615 0.1006 0.0420

Hue-OC-LBP 1.0651 0.1967 0.3165 0.1367

NOPPONENT-OC-LBP 0.8891 0.1808 0.2963 0.1173

RGB-OC-LBP 0.6763 0.1784 0.2883 0.1145

SIFT 1.0641 0.3276 0.4315 0.1613

C-SIFT 3.3041 0.9752 1.3109 0.4879

OPPONENT-SIFT 3.1964 0.9593 1.2966 0.4828

RGB-SIFT 3.1471 0.9551 1.2824 0.4773

Total (3 color OC-LBP) 2.6305 0.5559 0.9011 0.3685

Total (3 color SIFT) 9.6476 2.8896 3.8899 1.4480

When incorporating color information, the computations of color descriptors are about 3

times slower than the intensity-based descriptors, mainly because of the increasing channels.

However, the color OC-LBP descriptors are still about 4 times faster than color SIFT. The

proposed descriptors are thus better armed for large scale problems.

6. Conclusions

In this paper, a new operator called the orthogonal combination of local binary patterns,

denoted as OC-LBP, has first been proposed. It aims at reducing the dimensionality of the

original LBP operator while keeping its discriminative power and computational efficiency.

We have also introduced several new local descriptors for image region description

based on the proposed OC-LBP operator: the gray OC-LBP descriptor and six

color OC-LBP descriptors, namely RGB-OC-LBP, NRGB-OC-LBP, OPPONENT-OC-LBP,

NOPPONENT-OC-LBP, Hue-OC-LBP and TC-OC-LBP. The proposed descriptors

incorporate color information to increase their discriminative power, and also to enhance

their photometric invariance properties over various illumination changes.

The experiments in three different applications — image matching, object recognition and

scene classification — show the effectiveness of the proposed descriptors. They outperform

the popular SIFT, CS-LBP, HOG and SURF descriptors, and achieve comparable or even

better performances than the state-of-the-art color SIFT descriptors. Meanwhile, they provide
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complementary information to SIFT, since further improvement can be obtained by fusing

them.

Moreover, the proposed gray and color OC-LBP descriptors are about 4 times faster to

compute than the SIFT and color SIFT descriptors respectively. Therefore, they are very

promising for large scale recognition problems.

In our future work, we are willing to extend the proposed OC-LBP to the description of

video data. We also want to investigate visual object detection for improving visual object

recognition.
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