
Recurrent Genetic Algorithms:

Sustaining Evolvability

Adnan Fakeih1 and Ahmed Kattan2

1 Future Business Development Ltd., Saudi Arabia
2 Department of Computer Science, Um Al-Qura University, Saudi Arabia

adnan@fbd.net, ajkattan@uqu.edu.sa

Abstract. This paper proposes a new paradigm, referred to as Recur-
rent Genetic Algorithms (RGA), to sustain Genetic Algorithm (GA)
evolvability and effectively improves its ability to find superior solu-
tions. RGA attempts to continually recover evolvability loss caused by
the canonical GA iteration process. It borrows the term Recurrent from
the taxonomy of Neural Networks (NN), in which a Recurrent NN (RNN)
is a special type of network that uses a feedback loop, usually to account
for temporal information embedded in the sequence of data points pre-
sented to the network. Unlike RNN, the temporal dimension in our al-
gorithm pertains to the sequential nature of the evolution process itself;
and not to the data sampled from the problem solution space. Empirical
evidence shows that the new algorithm better preserves the population’s
diversity, higher number of constructive crossovers and mutations. Fur-
thermore, evidence shows that the RGA outperforms the standard GA
on two NP problems and does the same on three continuous optimisation
problems when aided by problem encoding information.

1 Introduction

The notion of “evolvability” is defined as “the ability of a population to produce
variants fitter than any yet existing” [1]. Hence, the choice of selection, search
operator and representation is vital to the performance of GA because they con-
trol the creation of new individuals throughout the evolutionary process. One
aim of researchers in the Evolutionary Computation (EC) field is to discover new
methods for increasing evolvability of evolutionary systems. The term evolvabil-
ity does not only refer to how often offspring are fitter than their parents but also
to the entire distribution of fitness values among offspring produced by a group
of parents [1]. It should noted that even a random search can generate offspring
that are fitter than their parents. Thus, to prove that a GA’s performance is
superior we need to show that the fitness distribution of the entire population is
higher than that produced by a random search process. Obviously, for a success-
ful evolvable search process not all parents in the population need to produce
fitter offspring. It is usually those parents with higher than average fitness who
carry the responsibility of making the search rewarding. This is because selection
is naturally biased toward this slice of the population.

J.-K. Hao and M. Middendorf (Eds.): EvoCOP 2012, LNCS 7245, pp. 230–242, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Recurrent Genetic Algorithms: Sustaining Evolvability 231

To increase evolvability of individuals means to implicitly encourage search
operators to produce a high correlation between parents and offspring fitness
values in the next generation. This correlation has been explained by building
block hypothesis in [4] as the correlation between parents and offspring fitnesses
under the crossover operator. The building block is a sequence of genetic ma-
terials in a fit parent that is likely to produce fitter offspring upon joining a
crossover process with other individuals.

In the standard form of GA, the fundamental idea that moves the search pro-
cess is gleaned from the famous Darwinian theory of the “survival of the fittest” in
which individuals that have superior fitness value (in relation to the problem to be
solved) are considered fitter than inferior individuals and thus have a better chance
to pass their good genetic materials (or more precisely, potentially good genetic
materials) into the next generation. In this work, we consider another way of look-
ing at the term “fittest” in which we ascribe this description to those individuals
who are able to produce fitter offspring. Naturally, these individuals may not nec-
essarily be the fittest in relation to solving the given problem. To this end, we pro-
pose a modification to the canonical GA where we evaluate individuals based on
their parental abilities (more on this in Section 3). Evolvability refers to the poten-
tiality of evolvement; rather than immediate improvements in fitness. Therefore,
our algorithm works best when allowed to evolve for significantly higher number
of generations.

2 Related Works

The concept of evolvability has been an active research area in both evolutionary
biology and computer science for the past several decades. Hu and Banzhaf in
[6] have argued that adopting new knowledge about natural evolution generated
in areas such as molecular genetics, cell biology, developmental biology, and
evolutionary biology would benefit the field of evolutionary computation. The
authors discussed evolvability and methods for accelerating artificial evolution by
introducing notions from biology and their potential in designing new algorithms
in EC.

It has been recorded that the evolvability property has good effect on the
search process. For example, in [2], the authors suggested that evolvability can
effectively reduce the bloat in evolutionary algorithms that use variable length
representations. In their work, the authors noted the similarity of bloat causes
and evolvability theory, thus, they argue that reproductive operators with high
evolvability will be less likely to cause bloat.

With the importance of evolvability as a research topic, several measurements
have been proposed to quantify it. Wang and Wineberg [11], suggested two mea-
sures of evolvability one based on fitness improvement and the other based on the
amount of genotypic change. The authors divided the population into three sub-
populations, where the size of each sub-population is determined dynamically.
The first sub-population uses selection based on fitness directly; the second sub-
population is based on the fitness-improvement-ratio; finally, selection for the



232 A. Fakeih and A. Kattan

third sub-population is based on genotypic change. Each sub-population is filled
by selecting chromosomes from the parent’s generation under its own selection
functions. Thereafter, the three sub-populations are merged, and the GA genetic
standard operators are applied to form the next generation.

Unlike other works, in this paper, we propose a new paradigm for the evo-
lutionary process to sustain population’s evolvability and effectively improves
its ability to find superior solutions. The main idea is based on rewarding the
parents the fitness of their offspring. This is implemented by introducing an
intermediate population (a feedback loop) to measure the ability of parents to
reproduce. Upon re-evaluating parents’ fitnesses, the algorithm proceeds as a
standard GA; until next evaluation is due. (more details in Section 3).

3 Recurrent Genetic Algorithms

The proposed paradigm is broadly outlined in figure1. Firstly, as in standard GA
procedures, we randomly generate an initial population ti where i ∈ {0, 1, . . .
max generation} and rank its individuals based on their fitness values. Using
standard selection and genetic operators, the system generates population t̂i from
population ti. Here, population t̂i is used as feedback intermediate population
(between population ti and ti+1) where it allows the system to discover the ability
of individuals to produce fitter offspring. Once t̂i is available, the algorithm uses
its fitness values to reward parents in population ti, thus, this intermediate
population is used to evaluate individuals considering how much they effectively
managed to push the search process forward, which, of course, may not coincide
with the standard evaluation of individuals based on their fitness values.

Here t̂i is used as a feedback loop as in the Recurrent Neural Networks (RNN)
[5] where connections between units form a directed cycle used to allow it to ex-
hibit dynamic temporal behaviour. Unlike feedforward Neural Networks, RNNs
can use their internal memory to process arbitrary sequences of inputs. Although
GA applications, in general, do not have temporal dimension as the basic focus
lies in finding the best solution in a static “spacial” solution space, we use the
the recurrencey concept in the intermediate population t̂i to capture the tem-
poral effects that the GA undergoes during the process of evolution. In other
words, we use the recurrency notion to account for the evolvability of GA from
one generation to the next.

Preliminary experiments show that an evaluation of individuals that is solely
based on the fitness value of their offspring may not appropriately enhance the
evolvability. This may be explained by several factors controlling the creation
of any offspring; such as crossover/mutation point, original fitness value of the
parent, selection pressure and the fitness value of the other parent in case of
crossover. Therefore, if we simply allocate offspring fitness to parents, we would
be neglecting all these important factors that contribute to creating the offspring.
Also, this raises the question of which offspring to use when rewarding parents?.
In [11] the authors used fittest offspring (i.e., the one with the highest fitness
value) to measure the evolvability of an individual (assuming that it gives an



Recurrent Genetic Algorithms: Sustaining Evolvability 233

Fig. 1. RGA process outline

indication of the potential fitness upper limit that an individual can produce).
This is not, however, entirely accurate estimation because the circumstances
that resulted in creating this offspring are not necessarily to be repeated in
future generations. For these reason, in this research, we opted for rewarding the
parents based on the average fitness values of their offspring and the amount
of genetic materials they passed onto their offspring. Here, we used a Fitness
Reward Function (FRF) that rewards parents in population ti based on their
offspring’s fitness values in the intermediate population t̂i.

For each crossover operator that parents Px and Py joined, where x, y ∈
{1, 2, . . . , population size}, we use the following FRF :

FRF (ParentxFitness) = Offspring F itness× Parentx contribution

FRF (ParentyFitness) = Offspring F itness× Parenty contribution (1)

where, Offspring Fitness is the fitness value of the generated offspring, Parent

x contribution and Parenty contribution are real numbers from the interval
(0, 1) to represent the proportion of genetic materials that each parent con-
tributed when generating the offspring. Note that Parentx contribution +
Parenty contribution = 1.

For each mutation operator that parent Px joined, we use the following FRF :

FRF (ParentxFitness) = (Offspring F itness× Parent contributionx) (2)

Here, because the mutation operator is based on single parent, Parentx
contribution is calculated as the amount of genetic materials that passed from
the parent into the offspring.



234 A. Fakeih and A. Kattan

The final rewarded fitness value is calculated as follows:

Parentx Fitness =

∑
FRF (Parentx Fitenss)

Number of offspring
(3)

where,
∑

FRF (Parentx Fitenss) is the summation of the FRF s for Parentx
as shown in Equations 1 & 2 (whether it joined crossover and/or mutation op-
erators) and Number of offspring is the total number of offspring produced by
Parentx in population t̂i.

Note that once the RGA re-evaluates population ti, it does not consider the
original fitness of the parent any longer. Instead, all individuals are ranked based
on their ability to produce offspring in relation to the amount of genetic materials
they passed onto those offspring.

Naturally, the selection process may decides to leave some individuals uns-
elected. Usually, those individuals have the most inferior fitness values of the
whole population and therefore the selection process decides that they are not
worthy to be allowed to be part of the next generation. We experimented with
several alternatives as to how to evaluate parents that have not produced any
offspring. One was to assign them the mean fitness value of the whole popula-
tion, which resulted in poor performance. The best empirically based treatment
was found to be allocating such parents “the least” fitness value allocated to
individuals in the same population.

Despite the success of RGA (as will be shown in the experiments section),
it suffers from an obvious disadvantage which is the extra computational cost
introduced by producing and evaluating the intermediate population. Thus, it is
fair to say that RGA has a slower convergence rate than standard GA. However,
when comparing the performance of the two algorithms to each others, this
disadvantage is mitigated by allowing RGA to evolve for only half the number
of generations iterated by the standard GA.

3.1 Elitism

As explained previously, RGA uses FRF to reward parents based on the average
fitness values of their offspring; and the amount of genetic materials they passed
onto their offspring. Thus, for two parents who joined a crossover operator, the
evaluation of their fitness values is dependant on the amount of chromosomes
they passed to their offspring. This is both a strength and a weakness, though.
On one hand, it is a strength in that the parent who passed more chromosomes
into its offspring is more likely to pass a golden building-block of chromosomes
that contributes in creating a fitter offspring therefore it receives bigger reward
than the second parent. On the other hand, it is a weakness because if this
golden building-block of chromosomes is a mixture of both parents (e.g., tail
of the first parent concatenated with the head of the second parent) then our
reward mechanism will not be fair. This unfairness of reward may divert the
algorithm from pursing optimality by discarding already highly fit solutions.
There is no practical way of knowing this information unless we have an explicit



Recurrent Genetic Algorithms: Sustaining Evolvability 235

knowledge about the problem. Therefore, since RGA has already invested in
evaluating population t̂i (the intermediate stage to measure the evolvability of
population ti) we copy the elite individuals from t̂i into ti. This has proven to
improve the performance in some problems.

4 Experiments

The experiments have been designed to see whether RGA can sustain evolvabil-
ity, and to see how diversity is closely related its behaviour. Our experiments
covered three different problems, namely, NK-Landscape [8] (unimodal problem),
Hamming Centres [3], (multimodal problem), and three different continuous op-
timisation problems.

4.1 NK Landscape

NK-Landscape was established by Stuart Kauffman in [8]. We investigated the
performance of RGA under different values ofN . Namely, we usedN = 20, 30, 40
and 50. For each N value we tested three different K values. Thus, K = N

5 (easy

problem), N
2 (hard problem), and N

2 + 5 (very hard problem).1 For each N,K
combination we tested the system using 20 independent runs. Results have been
compared to the standard GA. As stated earlier, to allow fair comparison, we
used exactly the same number of evaluations in both systems. Thus, we counted
the number of evaluations in the intermediate generations and gave exactly the
same to the standard GA. For both RGA and standard GA we used population
of 100 individuals and evolved them through 500 generation (this includes the
intermediate generations in RGA), crossover rate was 0.9 and mutation 0.1,
tournament selection was of size 2. In RGA we applied 5% elitism (defined in
sec. 3.1) and 5% standard elitism for the standard GA.

Table 1 summarises the results of 480 independent runs. As can be seen in the
table, when the NK problems are easy (as in NK(20, 5), NK(30, 6), NK(40, 8)
and NK(50, 10)) both RGA and standard GA are even on average (where each
system has better average in two out of four cases). Also, in these four easy
problems the best solutions (across the 20 runs) achieved by standard GA are
better than those achieved by RGA. This is because the problem’s landscape
is relatively smooth so standard GA search had a good chance to hit solutions
near the global optima. Now, if we look at the hard and very hard problems,
it is clear that RGA comes on the first place both in terms of average (i.e.,
average of best solutions in the 20 runs) and best (i.e., best achieved solution
across the entire 20 runs). Thanks to the feedback loop, introduced through the
intermediate populations RGA has higher evolvability than standard GA search.

To further compare the behaviour of RGA against its competitor, we mea-
sured the average of four different criteria for each system under each N,K

1 In [7] the authors provided an indication of NK-landscape hardness under different
settings.



236 A. Fakeih and A. Kattan

Table 1. Summary of 480 independent runs (20 runs for each N,K combination with
each system).

RGA GA
Mean Best Std Mean Best Std

N20

K=5 0.76 0.77 0.01 0.75 0.77 0.02
K=10 0.76 0.78 0.02 0.74 0.77 0.02
K=15 0.75 0.79 0.02 0.74 0.77 0.02

N30

K=6 0.76 0.80 0.03 0.78 0.80 0.02
K=15 0.72 0.77 0.02 0.71 0.74 0.01
K=20 0.71 0.74 0.01 0.70 0.73 0.02

N40

K=8 0.74 0.78 0.02 0.74 0.79 0.02
K=20 0.70 0.72 0.01 0.69 0.70 0.01
K=25 0.69 0.71 0.01 0.68 0.69 0.01

N50

K=10 0.72 0.75 0.02 0.72 0.75 0.01
K=25 0.69 0.74 0.02 0.67 0.69 0.01
K=30 0.67 0.72 0.02 0.67 0.70 0.01
*Bold numbers are the highest.

combination across the 20 runs. As can be seen in Figure 3, we compared first
the average of best solution (generation by generation) for each system. Note
that when the problems are easy both RGA and standard GA have almost the
same performance. However, as the problem gets harder RGA gets better as
its performance goes beyond the standard GA. What is impressive about these
fitness curves is that they maintain an almost linear fitness increase for a pro-
longed period, and do so in a gradualistic manner, whilst standard GA reaches
a plateau and no further improvement in the fitness is observed. Secondly, we
compared the diversity of population (diversity was measured as the entropy of
the population’s fitness). RGA remarkably has higher diversity than standard
GA in all experiments. It is worth noticing, though, that the diversity becomes
higher as the problem gets harder. Finally, we compared the number of con-
structive crossovers, and mutations, by ‘constructive’ we refer to the crossover
or mutation operator that resulted in a fitter offspring than its parents. It is
clear that RGA has significantly a higher number of constructive crossovers and
mutations than its competitor in all runs.

To compare the parents-offspring fitnesses across all generations we used the
fitness cloud graph introduced by Vanneschi et al. in [10] to get a visual rendering
of evolvability. Figure 2 illustrates the parent-offspring fitnesses in one of the
runs versus their number of occurrence in all generations. As can be seen in
standard GA fit parents are not able of producing fitter offspring all times. This



Recurrent Genetic Algorithms: Sustaining Evolvability 237

Fig. 2. Fitness Cloud: RGA vs. Standard GA NK(30,15)

is probably due to the destructive nature of the search operators (as it has been
illustrated in figure 3 by the declining number of successful (i.e., constructive)
crossover/mutations operators). We also noticed that in standard GA the search
converges to a single solution dominating the whole population. This is clearly
illustrated by the peak appearing in the figure, where a single parents-offspring
fitness has high dominating number of occurrences. However, RGA shows that
fit parents are able of producing fitter offspring most of the times. Also, the
search does not allow a single individual to dominate the whole population as
in standard GA, due to the diversity sustained by the RGA.

4.2 Hamming Centres

Hamming Centers is an NP-complete problem defined in [3] as follows. Lets a set
S of ki binary strings, where i ∈ {1, 2...I}, each of length n, and r is a positive
integer. The objective is to find n−bits string y such that for every string ki in
S, the Hamming distance, H(ki, y) ≤ r.

We investigated the performance of RGA under different values of n−bits (n =
20, 40, 60, 80, 100 and 120). For each n value we performed 20 independent runs.
The size of the set S was 20 in all experiments. The fitness value was measured
as the number of cases that string y satisfied the condition of H(ki, y) ≤ r. Thus,
the optimal solution is equal to the size of S (which is 20 in our case). We used
the same setting as in Section 4.1, except that the population’s size was 500 and
the number of generations was set to 1000 for each system.

Table 2 summarises the results of 240 independent runs. As can be seen in
the table, RGA performance improves as the problem gets harder. To further
compare the behaviour of RGA against its competitor, we measured the average
of the four criteria (similar to the NK experiments in Section 4.1) for each system



238 A. Fakeih and A. Kattan

10
0

10
1

10
2

10
3

10
0.1

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

Diversity

Diversity

G
en

er
at

io
ns

 

 
RGA (K=4)
GA (K=4)
RGA (K=10)
GA (K=10)
RGA (K=15)
GA (K=15)

10
0

10
1

10
2

10
3

10
0.1

10
0.2

10
0.3

10
0.4

10
0.5

10
0.6

Diversity

Generations

D
iv

er
si

ty

 

 
RGA (K=6)
GA (K=6)
RGA (K=15)
GA (K=15)
RGA (K=20)
GA (K=20)

Fig. 3. RGA vs. Standard GA on NK landscape (N = 20, 30)



Recurrent Genetic Algorithms: Sustaining Evolvability 239

Table 2. Summary of 240 independent runs (20 runs for each n value)

RGA GA

Mean Best Std Mean Best Std
n=20 3 3 0.00 2.75 3 0.43
n=40 7.1 8 0.71 6.95 8 0.70
n=60 9.75 11 0.73 8.7 10 0.69
n=80 11.45 13 1.00 10.9 12 0.84
n=100 12.65 15 1.20 12.1 14 0.90
n=120 12.6 14 0.94 12.65 13 0.56
*Bold numbers are the highest.

under each n value across the 20 runs.2 Looking at the average best solutions
in each generation, we noticed that RGA behaves the same way it did in the
NK problem. For n = 20 and 40 RGA and GA have almost similar performance.
The performance gap increases in favour of the RGA in the remaining n values.
Also, RGA has a higher diversity and higher number of constructive operators
in all runs. Moreover, we noticed that these measures show better values as the
problem gets harder. Despite the remarkable results obtained by the RGA it
is fair to note that the difference in average best solutions in each generation
between it and the standard GA is not as large in this problem as it was in the
NK experiments, which may indicate that the RGA does not perform as well in
multimodal problems as it does in unimodal ones.

4.3 Continuous Optimisation

We investigated RGA’s performance in continuous optimisation problems. Three
benchmark functions have been used in our experiments. Namely, Rastrigin func-
tion, Dixson & Price function, and Michalewics function. Functions’ notations
are defined in [9].

Here, we used the same setting as in 4.1, except that the number of generations
was set to 5000 and population size was set to 500 for each system. Unlike the
other two problems (i.e., NK-landscape and Hamming Centres), here individuals
are coded as real numbers from the interval (0, 5]. Thus, each function receives n
number of parameters and the RGA tries to optimise these parameters in such
a way that maximises the function’s output. In our experimentation we tried
to maximise the test functions using RGA and GA under different number of
parameters. Thus, we explored the systems performance at n = 15, 20, 25, and
30 for each function. For each n value we tested the systems using 20 indepen-
dent runs. Table 3 summarises the results. As can be seen in the table, RGA has
been outperformed by standard GA in most of the runs. We also noticed that
averages of best solutions in each generation, diversity and the number of con-
structive crossovers/mutations have dropped drastically similar to the standard

2 Due to the restriction on number of pages we are not able to present the full figures
in this paper.



240 A. Fakeih and A. Kattan

Table 3. Summary of 480 independent runs (20 runs for each n value) using original
FRF

RGA GA

Mean Best Std Mean Best Std

DixonPrice function

n = 15 8227.37 8704.30 303.86 8524.99 9078.43 408.09
n = 20 14157.76 15211.50 591.62 14954.73 16054.00 779.36
n = 25 21715.74 23024.50 1051.07 22759.18 25005.10 1125.48
n = 30 30109.90 34750.80 2117.33 31761.24 35665.00 1835.55

Michalewics function

n = 15 8.94 10.27 0.75 9.30 10.87 0.85
n = 20 10.57 12.95 1.08 11.86 14.01 1.16
n = 25 12.28 14.10 1.06 13.77 16.22 1.43
n = 30 13.97 16.30 1.19 15.09 18.46 1.72

Rrastrigin function

n = 15 543.68 548.53 2.88 545.95 554.09 4.53
n = 20 725.72 732.41 3.34 729.53 743.96 6.28
n = 25 905.09 916.32 5.21 907.34 915.27 5.16
n = 30 1087.16 1096.39 4.80 1090.50 1106.41 7.84
*Bold numbers are the highest.

GA (unlike the other two problems). However, RGA still maintaining slightly
better diversity. These results were surprising given the superior performance
by RGA in the previous two problems. We believe that the reason for this per-
formance is largely attributed to the selection of the FRF , which needs to be
defined differently for this type of problems. The standard FRF did not manage
to reward parents in a favourable manner.

In an attempt to verify our assumption (i.e., degradation of performance in
this problem is largely attributed to the selection of the FRF ) we have intro-
duced a slight modification in the FRF used for solving continuous optimisation
problems. The FRF (defined in Section 3) assumes a linear dependency between
impact on fitness and quantity of genetic material passed to the offspring, thus
the fitness of the parent has been estimated as the weighted average of the fit-
ness of the offspring with weights the chromosomes proportions of the offspring
inherited from the parent. This assumption coincides with the building block
hypothesis [4]. In other words, beneficial properties of parents are aggregated in
(relatively) small code blocks at various locations within the genome.

This, however, and unlike the previous two test problems, does not work well
in continuous optimisation problems where chromosomes are real numbers and
not binary digits that can be summed up to represent the parents contribution
to the formation of a specific offspring. To account for the different nature of
the problem under investigation, we modified the FRF to consider the values
contained in the chromosomes contributed by the parents rather than the mere
number of chromosomes. So, the contribution of Parentx now is the sum of
the values contained in the chromosomes contributed into the offspring. This



Recurrent Genetic Algorithms: Sustaining Evolvability 241

Table 4. Summary of 240 independent runs (20 runs for each n value) using modified
FRF

RGA
Mean Best Std

DixonPrice function

n = 15 8944.85 9509.38 272.66
n = 20 15645.78 16321.30 475.21
n = 25 23859.73 25401.10 975.31
n = 30 34229.60 36340.1 1184.77

Michalewics function

n = 15 12.13 12.73 0.44
n = 20 16.29 17.42 0.65
n = 25 17.67 19.22 0.93
n = 30 20.19 23.16 1.39

Rrastrigin function

n = 15 552.36 569.30 6.51
n = 20 732.04 742.12 5.12
n = 25 910.80 925.45 5.16
n = 30 1090.55 1100.94 5.00
*Bold numbers are the higher than standard GA.

modification did the trick, and the performance of the RGA was again superior
to that of the GA in all test problems (see Table 4).

This modification confirmed our assumption, that the low performance in
Table 3 was indeed due to the unsuitability of the FRF . Off course it can be
argued that this enhancement is obtained by using additional knowledge about
the problem under consideration. This is absolutely true, but it should also be
remembered that the issue of “parent contribution” is in the heart of the RGA
algorithm. In contrary to standard GA, this allows RGA to benefit from such
problem “encoding” knowledge in a very simple and straightforward manner. So,
although it is not fair to compare the performance of RGA to that of GA when
the former benefits form problem encoding information, while the later does not;
it is also unfair to deprive the former form so doing just because the later does
not have the means to employ such useful information. In future research we will
concentrate on this aspect of the algorithm.

5 Conclusions

This paper proposes a new paradigm, referred to as Recurrent Genetic Algo-
rithms (RGA), that attempts to sustain Genetic Algorithm (GA) evolvability
and effectively improves its ability to find superior solutions. The main idea
is formalised by simply introducing an intermediate population between subse-
quent generations. This intermediate population serves as a feedback loop where



242 A. Fakeih and A. Kattan

the system reward individuals based on their abilities to produce better off-
spring. The idea of the feedback loop accounts for the temporal effects that the
GA undergoes during the process of evolution.

As an experimental validation of the new paradigm on a non-trivial space
and structured representation, we have considered two well-known NP bench-
mark problems: the NK-landscape problem, to show the RGA behaviour under
unimodal problems and the Hamming Centres, to show RGA behaviour under
mutlimodal problems. Moreover, we tested RGA using three continuous optimi-
sation problems. Experimental evidence shows that RGA remarkably maintains
higher diversity and increase the population’s ability to produce fitter offspring
in comparison to standard GA. Furthermore, empirical evidence shows that the
new paradigm has outperformed standard GA on two NP problems and does
the same on three continuous optimisation problems when aided by problem
encoding information. This, indeed, shows that RGA has the potential to work
well on real-world problems.

In future work we will test RGA on multi-objective optimisation problems.

References

1. Altenberg, L.: The evolution of evolvability in genetic programming. In: Kinnear
Jr., K.E. (ed.) Advances in Genetic Programming, ch.3, pp. 47–74. MIT Press
(1994)

2. Bassett, J.K., Coletti, M., De Jong, K.A.: The relationship between evolvability and
bloat. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary
Computation, GECCO 2009, pp. 1899–1900. ACM, New York (2009)

3. Frances, M., Litman, A.: On covering problems of codes. Theory of Computing
Systems 30, 113–119 (1997), doi:10.1007/BF02679443

4. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing, 1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

5. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice
Hall, Upper Saddle River (1999)

6. Hu, T., Banzhaf, W.: Evolvability and speed of evolutionary algorithms in light of
recent developments in biology. J. Artif. Evol. App. 2010, 1:1–1:28 (2010)

7. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem diffi-
culty for genetic algorithms. In: Eshelman, L.J. (ed.) ICGA, pp. 184–192. Morgan
Kaufmann (1995)

8. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. J. Theoret. Biol. 128(1), 11–45 (1987)

9. Molga, M., Smutnick, C.: Test functions for optimization needs. Test functions for
optimization needs (2005)

10. Vanneschi, L., Clergue, M., Collard, P., Tomassini, M., Vérel, S.: Fitness Clouds
and Problem Hardness in Genetic Programming. In: Deb, K., et al. (eds.) GECCO
2004, Part II. LNCS, vol. 3103, pp. 690–701. Springer, Heidelberg (2004)

11. Wang, Y., Wineberg, M.: The estimation of evolvability genetic algorithm. In:
The 2005 IEEE Congress on Evolutionary Computation, vol. 3, pp. 2302–2309
(September 2005)


	Recurrent Genetic Algorithms: Sustaining Evolvability
	Introduction
	Related Works
	Recurrent Genetic Algorithms
	Elitism

	Experiments
	NK Landscape
	Hamming Centres
	Continuous Optimisation

	Conclusions 


