- eig() - Method in class jama.Matrix
-
Eigenvalue Decomposition
- EigenvalueDecomposition - Class in jama
-
Eigenvalues and eigenvectors of a real matrix.
- EigenvalueDecomposition(Matrix) - Constructor for class jama.EigenvalueDecomposition
-
Check for symmetry, then construct the eigenvalue decomposition
- enhance(FloatArray2D, float) - Static method in class mpi.cbg.fly.Filter
-
in place enhance all values of a FloatArray to fill the given range
- error - Variable in class mpi.cbg.fly.Model
-
error depends on what kind of algorithm is running
small error is better than large error
- estimateBestModel(List<PointMatch>, Collection<PointMatch>, float, float, float) - Static method in class mpi.cbg.fly.TModel2D
-
estimate the transformation model for a set of feature correspondences
containing a high number of outliers using RANSAC
increase the error as long as not more inliers occur
- estimateBestModel(List<PointMatch>, Collection<PointMatch>, float, float, float) - Static method in class mpi.cbg.fly.TRModel2D
-
estimate the transformation model for a set of feature correspondences
containing a high number of outliers using RANSAC
increase the error as long as not more inliers occur
- estimateModel(List<PointMatch>, Collection<PointMatch>, int, float, float) - Static method in class mpi.cbg.fly.TModel2D
-
estimate the transformation model for a set of feature correspondences
containing a high number of outliers using RANSAC
- estimateModel(List<PointMatch>, Collection<PointMatch>, int, float, float) - Static method in class mpi.cbg.fly.TRModel2D
-
estimate the transformation model for a set of feature correspondences
containing a high number of outliers using RANSAC