A B C D E F G H I J L M N O P Q R S T U V W 

E

eig() - Method in class jama.Matrix
Eigenvalue Decomposition
EigenvalueDecomposition - Class in jama
Eigenvalues and eigenvectors of a real matrix.
EigenvalueDecomposition(Matrix) - Constructor for class jama.EigenvalueDecomposition
Check for symmetry, then construct the eigenvalue decomposition
enhance(FloatArray2D, float) - Static method in class mpi.cbg.fly.Filter
in place enhance all values of a FloatArray to fill the given range
error - Variable in class mpi.cbg.fly.Model
error depends on what kind of algorithm is running small error is better than large error
estimateBestModel(List<PointMatch>, Collection<PointMatch>, float, float, float) - Static method in class mpi.cbg.fly.TModel2D
estimate the transformation model for a set of feature correspondences containing a high number of outliers using RANSAC increase the error as long as not more inliers occur
estimateBestModel(List<PointMatch>, Collection<PointMatch>, float, float, float) - Static method in class mpi.cbg.fly.TRModel2D
estimate the transformation model for a set of feature correspondences containing a high number of outliers using RANSAC increase the error as long as not more inliers occur
estimateModel(List<PointMatch>, Collection<PointMatch>, int, float, float) - Static method in class mpi.cbg.fly.TModel2D
estimate the transformation model for a set of feature correspondences containing a high number of outliers using RANSAC
estimateModel(List<PointMatch>, Collection<PointMatch>, int, float, float) - Static method in class mpi.cbg.fly.TRModel2D
estimate the transformation model for a set of feature correspondences containing a high number of outliers using RANSAC
A B C D E F G H I J L M N O P Q R S T U V W