
EFFICIENT HUFFMAN DECODING WITH TABLE LOOKUP

Mohamed F. Mansour

DSPS R&D Center, Texas Instruments Inc., USA
mfmansour@ ti.com

ABSTRACT

We describe an efficient algorithm for Huffman decoding
using table lookup. The algorithm is optimized for ROM-
based Huffman decoding. It is a two-step process of prefix
template matching followed by a direct table access. We
propose an efficient algorithm for choosing the prefix
templates according to different optimization criteria. Also,
we propose different implementations for the prefix template
procedure.

Index Terms— Huffman decoding, Table lookup

1. INTRODUCTION

Huffman codes [1] have been widely used for source coding
and have shown high efficiency in exploiting the source
redundancy. Huffman codes along with run-length codes
have been widely used in most international multimedia
standards (e.g., MPEG and ISO standards [5], [7]).
Huffman decoding can be implemented with a lookup-table
(LUT) [2] or multiple lookup-tables [3]. If a single LUT is
used, the decoder throughput can be one codeword per cycle
whereas the throughput for multiple lookup tables is not
deterministic and in the worst case it equals the number of
lookup tables (assuming each LUT is processed in a single
cycle). The single LUT approach is usually adopted in high
efficiency Huffman decoder while the multiple LUTs
approach is usually used in low-power systems.
In this work, we propose a novel LUT-based approach for
Huffman decoding. The decoder has an LUT for a set of
prefix templates for the table codewords. Each prefix
template is associated with a direct access table for the
children codewords. During decoding, the input bits after the
prefix template are used to directly address the associated
codeword table to retrieve the correct codeword and its
length. We propose a novel approach for designing the
prefix templates which depends on a generic optimization
criterion that can be adjusted to the system. We propose
different criteria that can be employed in typical systems.

2. DECODING PROCEDURE

2.1. Background

Any Huffman code can be represented by a non-balanced
binary tree. The tree leaves represent the codewords of the
code. Any codeword has three attributes: the length, the
value, and the corresponding source symbol. An example of
a Huffman table of size 8 is shown in table 1 and the
corresponding tree representation is shown in Fig. 1. The
value of each internal node in Fig. 1 is the sum of its
children values and it is a measure of the internal node
probability.

Symbol Codeword Length Symbol Codeword Length

1 00111 5 5 010 3
2 00110 5 6 000 3
3 0010 4 7 11 2
4 011 3 8 10 2

Table 1. Example of Huffman Table of size 8.

Figure 1. Huffman Tree of the code in table 1

In general, the length of each codeword in the Huffman table
is inversely proportional to the probability of the
corresponding source symbol.
In our implementation, we use a set of prefix templates that
represent some internal nodes in the Huffman tree. Each
prefix template is parameterized by three attributes:
1. length (L): the length of the prefix value
2. value (V): the bit value of this prefix
3. Maximum child length (M): the maximum length of the

template children codewords.
For example, the internal node with label 12 in the Huffman
tree of Fig. 1, has the following attributes: L = 2, V = “00”,

36

1521

12 9

 66

 33

2 1

8 7

5 4

II 531424407281/07/$20.00 ©2007 IEEE ICASSP 2007

M = 5 (which is equivalent to codewords 1 and 2). The
choice of the prefix templates is discussed in section 4.

2.2. Decoder structure

Each prefix template is associated with a sub-table that
contains all children codewords. The size of the sub-table is
2M−L, where M and L are the attributes of the prefix template
as defined earlier. The indexing within the sub-table is done
using the last M-L bits of the input word that follow the L
bits of the prefix template. The sub-table is filled with the
children codewords of the templates with possible repetition
of certain codewords. For example, if the node with
frequency 12 in the Huffman Tree of Fig. 1 is selected as a
prefix template, then the size of its sub-table will be 8 and it
is organized as:

Sub-table
 Address

No. of
symbols

Sub-table
 Address

No. of
symbols

000 6 100 3
001 6 101 3
010 6 110 2

011 6 111 1
Table 2. Memory map of the sub-table example

In this example we have only four codewords while the
overall memory is eight, i.e., we have a redundancy factor of
two. This redundancy is minimized by proper choice of the
prefix templates as will be discussed in section 4.
Note that, each symbol in the prefix sub-table has two
attributes: the value of the corresponding source symbol and
the codeword length.
The prefix templates are chosen such that, no template is a
prefix of another template. Therefore when we match the
input bitstream with the prefix templates, one and only one
template will be matched. This is also a design criterion that
is considered while generating the prefix templates.

2.3. Decoding Procedure

The decoding process consists of three basic steps:
1. Matching the prefix templates
2. Getting the codeword symbol from the sub-table of the

selected prefix template using the bits that follow the
template for indexing within the sub-table.

3. Progressing in the input bitstream by a number of bits
equals the codeword length to decode the following
symbol.

In step 1, to match a certain prefix template of attributes
(L,V,M), the first L bits of the bitstream should equal V. Two
attributes are associated with each prefix template, which
are, the number of indexing bits in its subtable, and the
starting address of its subtable. The overall decoding
procedure is illustrated in Fig. 2.

The input module is responsible for aligning the input
bitstream so that decoding starts at the correct word
boundary. The alignment is controlled by the length of the
last decoded codeword. The alignment procedure is similar
to previous algorithms (e.g., [2], [4]). The input to the prefix
LUT module has a length Lmax which is the maximum
template length. The inputs to the sub-table index generator
are the attributes L and M−L of the matched template and
Mmax bits of the input bitstream which is the maximum
codeword length in the Huffman table. The output is the
M−L bits from the bit stream starting from the (L+1)st bit.
The prefix LUT module is the most energy-demanding
module in the decoder. The objective of this work is to
propose efficient implementation of this module as will be
discussed in the following two sections.

Figure 2. Huffman Decoding Procedure

3. PREFIX LUT IMPLEMENTATION

The prefix LUT module can be implemented in different
ways that depend on the structure of the Huffman table and
the target application.
The first choice is to use a programmable logic array (PLA)
as suggested in [4]. The cost of the PLA is proportional to
the number of templates which is significantly less than the
size of the Huffman table (which is used in [4]). In this case,
the prefix template matching can be performed in a single
cycle regardless of the matched template.
The second choice is to use a single comparator for
matching the prefix templates one at a time. This would
require a number of registers equals the number of
templates. To minimize the matching time, the templates are
arranged in descending order according to their
probabilities. The template probability equals the sum of the
probabilities of all its children (assuming source symbols are
independent). In Huffman codes the probability of each
source symbol is inversely proportional to the length of the
corresponding codeword. Therefore the probability of each
template is inversely proportional to the sum of the lengths
of its children codewords. The more accurate probability for
each template is obtained by scaling all individual
probabilities in (1) such that they sum to one. In the worst
case the number of cycles for prefix LUT equals the number

M−L bits

Input
Module

Prefix
LUT

Address
Generator

Subtable Index
Generator

ROM

Input bitstream
Template
index

Decoded symbol

Decoded symbol length

Template
Side information

II 54

of the templates. However, the average number of cycles is
much less and equals

=

=
M

i
av ipiN

1

)(. (1)

Where p(i) denotes the probability of the ith ordered template
and M is the number of templates.
The prefix tree can be converted to a balanced tree where all
the leaves are in the last tree level. In this case, the template
matching can be viewed as a binary tree search. At each
node we perform a binary comparison upon which we decide
the next child node to investigate. If the number of templates
is a power of two then we have a complete binary tree. The
number of cycles needed for template matching equals the
tree depth if one comparison is performed per cycle.
In particular, assume we have 16 prefix templates, then we
have a binary tree of height 4 and 15 internal nodes. Each
internal node is associated with a reference parameter, or in
other words a threshold, that is compared by the input
stream, i.e., we need a total of 15 thresholds. We illustrate
the previous arguments by an example constructed using one
of the mp3 Huffman tables code table 24 [5], which has 256
codewords. After running the prefix template construction
algorithm to be described in section 4, we get the templates
listed in table 3.

templat
e

Value
(binary)

Lengt
h template Value

(binary) Length

0 000 3 8 01001 5
1 1000 4 9 101 3
2 0100000 7 10 00101 5
3 0110 4 11 010001 6
4 00100 5 12 01011 5
5 01010 5 13 0111 4
6 11 2 14 1001 4
7 0011 4 15 0100001 7
Table 3. Prefix templates of the mp3 Code Table 24

The first step to compute the thresholds is to order the prefix
templates according to their values. For example, in the
above table the maximum template length is 7, therefore we
augment each template of length L bits by “7-L” zeros
(from right). Then we order the augmented templates. After
ordering, we apply successive refinement to get the
thresholds. In particular, we take the eighth codeword as the
first level threshold, and the fourth and twelfth codewords as
the second level thresholds and so on. For the above tables,
the threshold binary tree is as shown in Fig. 3, where each
internal node is associated with the corresponding threshold.
The implementation of the search algorithm of the above
balanced thresholds tree requires four comparators and a set
of multiplexers to decide each comparator reference value.
The balance tree implementation is also convenient if the
Huffman decoder is implemented on a general-purpose
hardware, e.g., a digital signal processor. In this case, the

templates may be stored in ROM and the comparators are
replaced by subtraction which is common on all general-
purpose hardware. In this case, we search may be optimized
by stopping the search if the difference with between the
input and the reference threshold is zero (because the
thresholds are themselves valid templates). In this case the
average matching cycles is:

= =

=
D

i

i

j

i
jav TpiN

1 1

)()(..γ (2)

Where γ is the number of cycles per comparison, and
)()(i

jTp is the probability of the jth template at the ith tree

level.

Figure 3. Balanced thresholds tree of table 3 with the
codewords as leaves

4. PREFIX TEMPLATES SELECTION

The proper design of the prefix templates is crucial for the
overall efficiency of the algorithm. In the following, we
describe an algorithm for generating a fixed number of
templates such that a certain objective function is optimized.
The algorithm is similar to the k-means algorithm for
constructing the codebooks in vector quantization schemes
[6]. The inputs to the algorithm are the Huffman table and
the maximum number of prefix templates N. The output is
the prefix templates. The algorithm proceeds as follows:
1. Start with the root node of the Huffman tree and split it

to its two children, add them to the templates table, and
set the number of templates to two.

2. For each node in the templates table compute the
objective function

3. Pick the template with the worst value of the objective
function and split it to its two direct children by padding
zero and one to the current template value and increase
its length by one. Then, increase the number of templates
by one.

4. If the number of templates equals N or if the algorithm
converges, stop. Otherwise go to step 2.

The algorithm terminates if the objective function reaches a
global optimal value; otherwise it is terminated when the
number of templates reaches its maximum.

R3

R6R7

0011

0100000100

R15 R14 R13 R12 R11 R10

0 4 10 7 2 15 11 8 5 12 3 13 1 14

R1

R2

R5 R4

R9 R8

9 6

01001

0111

1001

1011000

01011

01100101010000100000101000

II 55

The objective function varies according to the system
requirements and the structure of the prefix template LUT
module. For example, if the template matching process is
performed using successive matching, then the objective
function is to minimize the overall matching cycles in (2) for
a given limit of the storage space of the sub-tables. Note
that, the minimum time would be when we have a single
template, but in this case the sub-table size will be max2L

words, where Lmax is the maximum codeword length. The
objective function in this case is to minimize (2) subject to
the maximum storage limit. At each iteration we compute
the objective function after splitting each node, and split the
node that gives minimal increase in the objective function.
The optimization iteration stops when the overall subtables
size is below the maximum limit.
In some Huffman tables (e.g., in JPEG and MPEG-2 video
tables), the Huffman tree is very sparse away from the main
branch (the branch of all ones or all zeros), e.g., consider the
following Huffman table of size 16, from the JPEG standard
[7] (table K.3 for luminance DC coefficients) :

Symbol codeword Symbol codeword

0 00 6 1110
1 010 7 11110
2 011 8 111110
3 100 9 1111110
4 101 10 11111110
5 110 11 11111111

Table 4. Table K.3 for luminance DC coefficients in the
JPEG Standard

In this case, the prefix templates may be chosen such that it
is either zero or a string of ones. The template matching
procedure in this case is reduced to counting the number of
leading ones (or leading zeros for zero-leading tables). This
procedure is in general very efficient for Huffman tables
used in video and image standard. However, in most audio
standards, minimum variance Huffman tables are frequently
encountered and these templates will be memory inefficient.

5. DISCUSSION

We propose a generic algorithm for universal variable length
decoding. The algorithm is suited for Huffman tables in
current international multimedia coding standards. However,
it is general to decode any existing prefix code. The
algorithm generates a set of prefix templates and associates
each codeword to one of the templates. The decoding
process includes template matching and codeword retrieval
using direct table access. We proposed an efficient algorithm
for generating the prefix templates to optimize a generic
objective function and we gave several examples of the
objective function. Moreover, we described efficient

algorithms for implementing the template matching using
hardware and hybrid software/hardware approaches.
We evaluated the algorithm on a general purpose digital
signal processor using the objective function of minimizing
the overall memory requirement. The evaluation was on all
the Huffman tables of the two most common MPEG audio
standards, namely, mp3 and AAC. The results are
summarized in Table 5. The redundancy in this worst case is
1.82; whereas if we use the templates of regular Huffman
tables (that is all zeros or all ones) the redundancy is 9.

Algorithm Requirement
(words) Total

Codewords N = 16 N = 20
Mp3 1378 2516 2294
AAC 1362 1692 1672
Table 5. Total Storage requirement for the proposed

algorithm with AAC and mp3 audio standards

The proposed decoding algorithm can be adapted in
different ways according to the underlying application. For
fast Huffman decoding with regular Huffman tables, the
implementation of the prefix template matching with
counting the number of leading ones or zeros is the most
appropriate. For fast Huffman decoding with minimum
variance Huffman tables, the prefix LUT using PLA is
recommended along with minimum sub-table storage. For
low-power Huffman decoding either the balanced tree
template matching or a multi-step comparison (using a single
comparator) with the templates designed to minimize the
average number of decoding cycles.

REFERENCES

[1] D. Huffman, “A method for the construction of minimum
redundancy code”, Proc. IRE, vol. 40, pp. 1098-1101, 1952.
[2] S. Choi, and M. Lee, “ High Speech Pattern Matching
for a Fast Huffman Decoder”, IEEE Transactions on
Consumer Electronics, vol. 41, pp. 97-103, February 1995.
[3] S. Cho, T. Xanthopoulos, and A. Chandrakasan, “A low-
power Variable Length Decoder for MPEG-2 Based on
Nonuniform Fine-Grain Table Partitioning”, IEEE
Transactions on VLSI systems, vol. 7, no. 2, pp. 249-257,
June 1999.
[4] S. Lei, and M. Sun, “ An entropy coding system for
digital HDTV applications”, IEEE Transactions on Circuits
and Systems for Video Technology, vol. 2, No. 1, pp. 147-
155, March 1991.
[5] ISO/iec 11172-3:1993 “Information Technology –
coding of Moving Pictures and associated audio for Digital
Storage Media at up to about 1.5 Mbit/s –part 3 : Audio ”
[6] A. Gersho, and A. Gray, “Vector Quantization and
Signal Compression”, Kluwer Academic Publications, 1991.
[7] CCITT Recommendation T.81, “Digital compression
and coding of continuous-tone still images”, 1992.

II 56

