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ABSTRACT 

We describe an efficient algorithm for Huffman decoding 
using table lookup.  The algorithm is optimized for ROM-
based Huffman decoding. It is a two-step process of prefix 
template matching followed by a direct table access. We 
propose an efficient algorithm for choosing the prefix 
templates according to different optimization criteria. Also, 
we propose different implementations for the prefix template 
procedure. 

Index Terms— Huffman decoding, Table lookup

1. INTRODUCTION 

Huffman codes [1] have been widely used for source coding 
and have shown high efficiency in exploiting the source 
redundancy. Huffman codes along with run-length codes 
have been widely used in most international multimedia 
standards (e.g., MPEG and ISO standards [5], [7]). 
Huffman decoding can be implemented with a lookup-table 
(LUT) [2] or multiple lookup-tables [3]. If a single LUT is 
used, the decoder throughput can be one codeword per cycle 
whereas the throughput for multiple lookup tables is not 
deterministic and in the worst case it equals the number of 
lookup tables (assuming each LUT is processed in a single 
cycle). The single LUT approach is usually adopted in high 
efficiency Huffman decoder while the multiple LUTs 
approach is usually used in low-power systems. 
In this work, we propose a novel LUT-based approach for 
Huffman decoding. The decoder has an LUT for a set of 
prefix templates for the table codewords. Each prefix 
template is associated with a direct access table for the 
children codewords. During decoding, the input bits after the 
prefix template are used to directly address the associated 
codeword table to retrieve the correct codeword and its 
length. We propose a novel approach for designing the 
prefix templates which depends on a generic optimization 
criterion that can be adjusted to the system. We propose 
different criteria that can be employed in typical systems. 

2. DECODING PROCEDURE 

2.1. Background 

Any Huffman code can be represented by a non-balanced 
binary tree. The tree leaves represent the codewords of the 
code.  Any codeword has three attributes: the length, the 
value, and the corresponding source symbol. An example of 
a Huffman table of size 8 is shown in table 1 and the 
corresponding tree representation is shown in Fig. 1. The 
value of each internal node in Fig.  1 is the sum of its 
children values and it is a measure of the internal node 
probability. 

Symbol Codeword Length Symbol Codeword Length 

1 00111 5 5 010 3 
2 00110 5 6 000 3 
3 0010 4 7 11 2 
4 011 3 8 10 2 

Table 1. Example of Huffman Table of size 8. 

Figure 1. Huffman Tree of the code in table 1 

In general, the length of each codeword in the Huffman table 
is inversely proportional to the probability of the 
corresponding source symbol.  
In our implementation, we use a set of prefix templates that 
represent some internal nodes in the Huffman tree. Each 
prefix template is parameterized by three attributes: 
1.  length (L):  the length of the prefix value 
2. value (V):   the bit value of this prefix 
3. Maximum child length (M): the maximum length of the 

template children codewords. 
For example, the internal node with label 12 in the Huffman 
tree of Fig.  1, has the following attributes: L = 2, V = “00”, 
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M = 5 (which is equivalent to codewords 1 and 2). The 
choice of the prefix templates is discussed in section 4. 

2.2. Decoder structure 

Each prefix template is associated with a sub-table that 
contains all children codewords. The size of the sub-table is 
2M−L, where M and L are the attributes of the prefix template 
as defined earlier. The indexing within the sub-table is done 
using the last M-L bits of the input word that follow the L
bits of the prefix template. The sub-table is filled with the 
children codewords of the templates with possible repetition 
of certain codewords. For example, if the node with 
frequency 12 in the Huffman Tree of Fig.  1 is selected as a 
prefix template, then the size of its sub-table will be 8 and it 
is organized as: 

Sub-table
 Address

No. of 
symbols 

Sub-table
 Address

No. of 
symbols 

000 6 100 3 
001 6 101 3 
010 6 110 2 

011 6 111 1 
Table 2. Memory map of the sub-table example 

In this example we have only four codewords while the 
overall memory is eight, i.e., we have a redundancy factor of 
two. This redundancy is minimized by proper choice of the 
prefix templates as will be discussed in section 4.  
Note that, each symbol in the prefix sub-table has two 
attributes: the value of the corresponding source symbol and 
the codeword length.  
The prefix templates are chosen such that, no template is a 
prefix of another template. Therefore when we match the 
input bitstream with the prefix templates, one and only one 
template will be matched. This is also a design criterion that 
is considered while generating the prefix templates. 

2.3. Decoding Procedure 

The decoding process consists of three basic steps:  
1. Matching the prefix templates 
2. Getting the codeword symbol from the sub-table of the 

selected prefix template using the bits that follow the 
template for indexing within the sub-table. 

3. Progressing in the input bitstream by a number of bits 
equals the codeword length to decode the following 
symbol. 

In step 1, to match a certain prefix template of attributes 
(L,V,M), the first L bits of the bitstream should equal V. Two 
attributes are associated with each prefix template, which 
are, the number of indexing bits in its subtable, and the 
starting address of its subtable. The overall decoding 
procedure is illustrated in Fig.  2. 

The input module is responsible for aligning the input 
bitstream so that decoding starts at the correct word 
boundary. The alignment is controlled by the length of the 
last decoded codeword. The alignment procedure is similar 
to previous algorithms (e.g., [2], [4]). The input to the prefix 
LUT module has a length Lmax which is the maximum 
template length. The inputs to the sub-table index generator 
are the attributes L and M−L of the matched template and 
Mmax bits of the input bitstream which is the maximum 
codeword length in the Huffman table. The output is the 
M−L bits from the bit stream starting from the (L+1)st bit.  
The prefix LUT module is the most energy-demanding 
module in the decoder. The objective of this work is to 
propose efficient implementation of this module as will be 
discussed in the following two sections.

Figure 2. Huffman Decoding Procedure 

3.  PREFIX LUT IMPLEMENTATION 

The prefix LUT module can be implemented in different 
ways that depend on the structure of the Huffman table and 
the target application.  
The first choice is to use a programmable logic array (PLA) 
as suggested in [4]. The cost of the PLA is proportional to 
the number of templates which is significantly less than the 
size of the Huffman table (which is used in [4]). In this case, 
the prefix template matching can be performed in a single 
cycle regardless of the matched template. 
The second choice is to use a single comparator for 
matching the prefix templates one at a time. This would 
require a number of registers equals the number of 
templates. To minimize the matching time, the templates are 
arranged in descending order according to their 
probabilities. The template probability equals the sum of the 
probabilities of all its children (assuming source symbols are 
independent). In Huffman codes the probability of each 
source symbol is inversely proportional to the length of the 
corresponding codeword. Therefore the probability of each 
template is inversely proportional to the sum of the lengths 
of its children codewords. The more accurate probability for 
each template is obtained by scaling all individual 
probabilities in (1) such that they sum to one. In the worst 
case the number of cycles for prefix LUT equals the number 
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of the templates. However, the average number of cycles is 
much less and equals 

=

=
M
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Where p(i) denotes the probability of the ith ordered template 
and M is the number of templates. 
The prefix tree can be converted to a balanced tree where all 
the leaves are in the last tree level. In this case, the template 
matching can be viewed as a binary tree search. At each 
node we perform a binary comparison upon which we decide 
the next child node to investigate. If the number of templates 
is a power of two then we have a complete binary tree. The 
number of cycles needed for template matching equals the 
tree depth if one comparison is performed per cycle. 
In particular, assume we have 16 prefix templates, then we 
have a binary tree of height 4 and 15 internal nodes. Each 
internal node is associated with a reference parameter, or in 
other words a threshold, that is compared by the input 
stream, i.e., we need a total of 15 thresholds. We illustrate 
the previous arguments by an example constructed using one 
of the mp3 Huffman tables code table 24 [5], which has 256 
codewords. After running the prefix template construction 
algorithm to be described in section 4, we get the templates 
listed in table 3.

templat
e 

Value 
(binary)

Lengt
h template Value 

(binary) Length 

0 000 3 8 01001 5 
1 1000 4 9 101 3 
2 0100000 7 10 00101 5 
3 0110 4 11 010001 6 
4 00100 5 12 01011 5 
5 01010 5 13 0111 4 
6 11 2 14 1001 4 
7 0011 4 15 0100001 7 
Table 3.  Prefix templates of the mp3 Code Table 24

The first step to compute the thresholds is to order the prefix 
templates according to their values. For example, in the 
above table the maximum template length is 7, therefore we 
augment each template of length L bits by  “7-L” zeros 
(from right). Then we order the augmented templates. After 
ordering, we apply successive refinement to get the 
thresholds. In particular, we take the eighth codeword as the 
first level threshold, and the fourth and twelfth codewords as 
the second level thresholds and so on. For the above tables, 
the threshold binary tree is as shown in Fig.  3, where each 
internal node is associated with the corresponding threshold. 
The implementation of the search algorithm of the above 
balanced thresholds tree requires four comparators and a set 
of multiplexers to decide each comparator reference value.  
The balance tree implementation is also convenient if the 
Huffman decoder is implemented on a general-purpose 
hardware, e.g., a digital signal processor. In this case, the 

templates may be stored in ROM and the comparators are 
replaced by subtraction which is common on all general-
purpose hardware.  In this case, we search may be optimized 
by stopping the search if the difference with between the 
input and the reference threshold is zero (because the 
thresholds are themselves valid templates). In this case the 
average matching cycles is: 
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Where γ is the number of cycles per comparison, and 
)( )(i

jTp is the probability of the jth template at the ith tree 

level.

Figure 3. Balanced thresholds tree of table 3 with the 
codewords as leaves 

4. PREFIX TEMPLATES SELECTION 

The proper design of the prefix templates is crucial for the 
overall efficiency of the algorithm. In the following, we 
describe an algorithm for generating a fixed number of 
templates such that a certain objective function is optimized. 
The algorithm is similar to the k-means algorithm for 
constructing the codebooks in vector quantization schemes 
[6]. The inputs to the algorithm are the Huffman table and 
the maximum number of prefix templates N. The output is 
the prefix templates.  The algorithm proceeds as follows: 
1. Start with the root node of the Huffman tree and split it 

to its two children, add them to the templates table, and 
set the number of templates to two. 

2. For each node in the templates table compute the 
objective function  

3. Pick the template with the worst value of the objective 
function and split it to its two direct children by padding 
zero and one to the current template value and increase 
its length by one. Then, increase the number of templates 
by one. 

4. If the number of templates equals N or if the algorithm 
converges, stop. Otherwise go to step 2. 

The algorithm terminates if the objective function reaches a 
global optimal value; otherwise it is terminated when the 
number of templates reaches its maximum.  
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The objective function varies according to the system 
requirements and the structure of the prefix template LUT 
module. For example, if the template matching process is 
performed using successive matching, then the objective 
function is to minimize the overall matching cycles in (2) for 
a given limit of the storage space of the sub-tables. Note 
that, the minimum time would be when we have a single 
template, but in this case the sub-table size will be max2L

words, where Lmax is the maximum codeword length. The 
objective function in this case is to minimize (2) subject to 
the maximum storage limit. At each iteration we compute 
the objective function after splitting each node, and split the 
node that gives minimal increase in the objective function. 
The optimization iteration stops when the overall subtables 
size is below the maximum limit. 
In some Huffman tables (e.g., in JPEG and MPEG-2 video 
tables), the Huffman tree is very sparse away from the main 
branch (the branch of all ones or all zeros), e.g., consider the 
following Huffman table of size 16, from the JPEG standard 
[7] (table K.3 for luminance DC coefficients) : 

Symbol codeword Symbol codeword 

0 00 6 1110 
1 010 7 11110 
2 011 8 111110 
3 100 9 1111110 
4 101 10 11111110 
5 110 11 11111111

Table 4. Table K.3 for luminance DC coefficients in the 
JPEG Standard 

In this case, the prefix templates may be chosen such that it 
is either zero or a string of ones. The template matching 
procedure in this case is reduced to counting the number of 
leading ones (or leading zeros for zero-leading tables). This 
procedure is in general very efficient for Huffman tables 
used in video and image standard. However, in most audio 
standards, minimum variance Huffman tables are frequently 
encountered and these templates will be memory inefficient. 

5.  DISCUSSION 

We propose a generic algorithm for universal variable length 
decoding. The algorithm is suited for Huffman tables in 
current international multimedia coding standards. However, 
it is general to decode any existing prefix code. The 
algorithm generates a set of prefix templates and associates 
each codeword to one of the templates. The decoding 
process includes template matching and codeword retrieval 
using direct table access. We proposed an efficient algorithm 
for generating the prefix templates to optimize a generic 
objective function and we gave several examples of the 
objective function. Moreover, we described efficient 

algorithms for implementing the template matching using 
hardware and hybrid software/hardware approaches. 
We evaluated the algorithm on a general purpose digital 
signal processor using the objective function of minimizing 
the overall memory requirement. The evaluation was on all 
the Huffman tables of the two most common MPEG audio 
standards, namely, mp3 and AAC. The results are 
summarized in Table 5. The redundancy in this worst case is 
1.82; whereas if we use the templates of regular Huffman 
tables (that is all zeros or all ones) the redundancy is 9. 

Algorithm Requirement 
(words) Total 

Codewords N = 16 N = 20 
Mp3 1378 2516 2294 
AAC 1362 1692 1672 
Table 5. Total Storage requirement for the proposed 

algorithm with AAC and mp3 audio standards 

The proposed decoding algorithm can be adapted in 
different ways according to the underlying application. For 
fast Huffman decoding with regular Huffman tables, the 
implementation of the prefix template matching with 
counting the number of leading ones or zeros is the most 
appropriate. For fast Huffman decoding with minimum 
variance Huffman tables, the prefix LUT using PLA is 
recommended along with minimum sub-table storage. For 
low-power Huffman decoding either the balanced tree 
template matching or a multi-step comparison (using a single 
comparator) with the templates designed to minimize the 
average number of decoding cycles.  
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